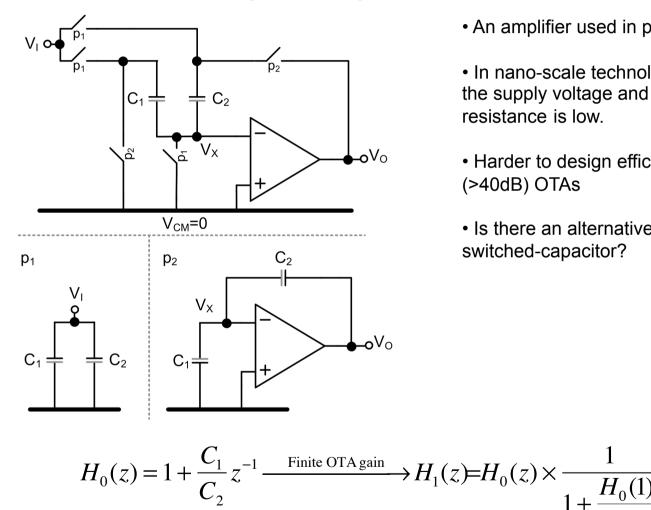
Design and behavioral simulation of comparator based switched-capacitor circuits

Carsten Wulff, Trond Ytterdal

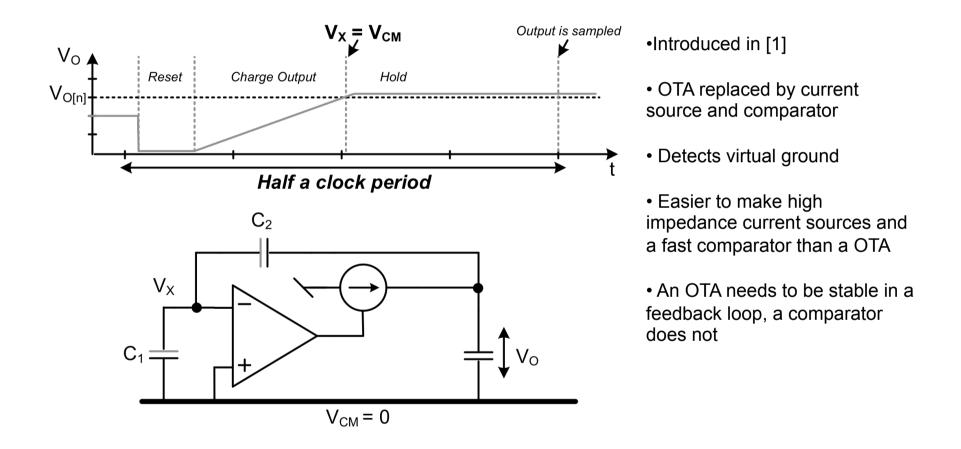
Department of Electronics and Telecommunication Norwegian University of Science and Technology


Outline

- Motivation
- Comparator based switched capacitor circuits
- Design equations
- Example of a comparator-based switched-capacitor circuit
- Future work

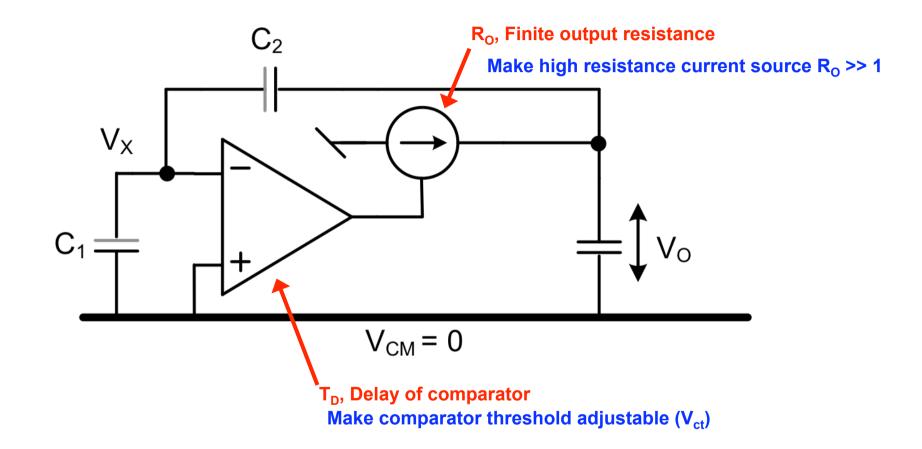
Motivation: Why CBSC


Conventional switched-capacitor amplifier


An amplifier used in pipelined ADCs

 In nano-scale technologies (< 100nm) the supply voltage and transistor output resistance is low.

- Harder to design efficient high-gain (>40dB) OTAs
- Is there an alternative to OTA based switched-capacitor?



Comparator-based switched capacitor circuits

Non-ideal effects

The design equations

With these two effects the output voltage of the CBSC • amplifier is

$$V_{O} = 2e^{\frac{-T_{d}}{R_{O}C_{O}}} + I_{O}R_{O}\left[1 - e^{\frac{-T_{d}}{R_{O}C_{O}}}\left(1 + 2\frac{V_{ct}}{I_{O}R_{O}}\right)\right]$$

Gain of amplifier
Overshoot caused by comparator delay
$$C_{I} = C_{O}$$

1. Required sampling capacitor (from [2]) 3. Required output resistance

$$C = a_1 \frac{48kT2^{2B}}{V_{pp}^{2}}$$

- $R_{O} = \frac{-T_{d}}{\ln(1 \varepsilon_{a})C_{O}}$
- T = Temperature a₁ = constant T_r = reset time

2. Necessary current

$$I_{o} = C_{o} \frac{(V_{pp}/4 + V_{cm})}{1/2f_{s} - T_{r}}$$

$$V_{ct} = -\frac{1}{2} I_O R_O \left(1 - e^{\frac{T_d}{R_O C_O}} \right)$$

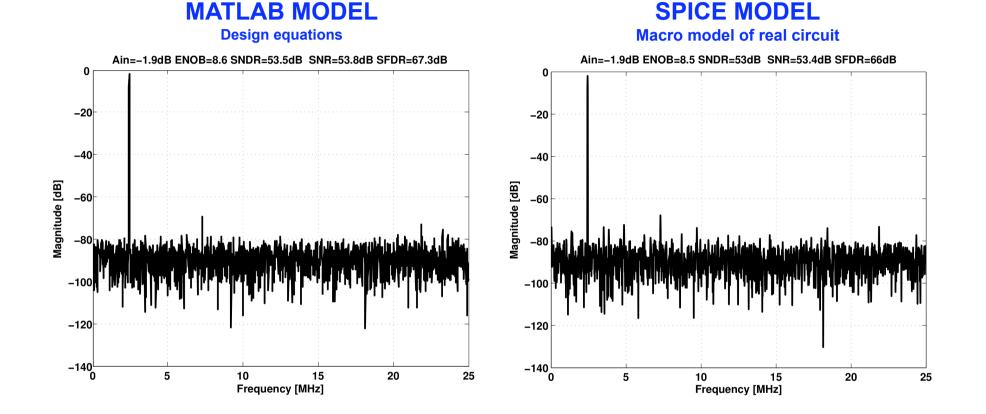
 ε_{a} = Gain error V_{PP}^{\flat} = Peak to peak output voltage **B** = Number of bits k = Boltzmann's constant V_{cm} = Common mode voltage f_s = sampling frequency

Calculate:

- I_o = Current in current source
- **R**_o = Output resistance
- **C** = Sampling capacitor
- V_{ct} = Comparator threshold

The example system

Given


Parameter	Value
В	9
Т	300K
k	1.38e-23
a ₁	3
V _{PP}	1V
V _{CM}	0.6V
ε _g	1/(2^B)
T _d	0.5ns
T _r	1ns
fs	50MHz

Calculated

Parameter	Value
С	160fF
I _o	30µA
R _o	1.1MΩ
V _{ct}	32mV

Simulation results

< 7 % Difference for SNDR and SNR

Both models can be downloaded from <u>http://www.wulff.no/carsten</u>. Tools & Scripts, Behavioral model of comparator-based switched-capacitor circuits

Conclusion

- Design equations give can quickly produce values for macro model simulation
- Design equations predicts the required parameters with high accuracy (less than 7% error for SNDR and SNR)

References

- T. Sepke, J. K. Fiorenza, C. G. Sodini, P. Holloway, and H.-S. Lee, "Comparator-based switched-capacitor circuits for scaled CMOS technologies," in ISSCC Digest of Technical Papers, 2006, pp. 220–221.
- C. Wulff and T. Ytterdal, "Design Of A 7-bit, 200MS/s, 2mW Pipelined ADC With Switched Open-Loop Amplifiers In A 65nm CMOS Technology," in Proc. NORCHIP 2007

