Design of a 7-bit, 200MS/s, 2mW pipelined ADC with switched open-loop amplifiers in a 65nm CMOS technology

Carsten Wulff, Trond Ytterdal

Department of Electronics and Telecommunication Norwegian University of Science and Technology

Before we begin

Outline

- Low resolution ADC architectures
- The pipelined ADC architecture
- The open-loop amplifier
- Simulation results

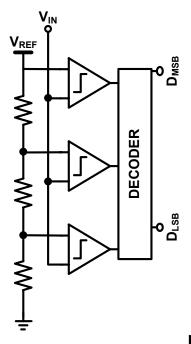
Assumptions

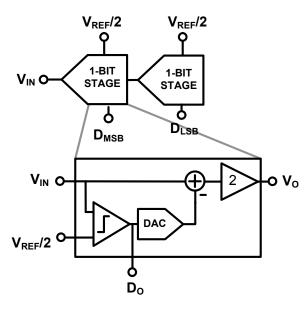
- Simulation is a good indicator of actual performance
- The power dissipation in an ADC should be dominated by thermal noise

Main message of this talk

- Reducing parasitic capacitance is the key to high efficiency low resolution ADCs.
- A pipelined ADC with switched open-loop amplifiers is an efficient architecture for low resolution ADCs

Our contribution

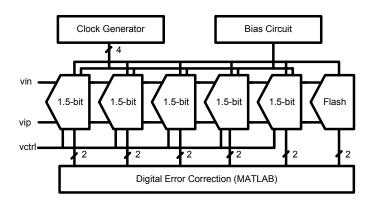

- Turning open-loop amplifiers off during sampling reduces power by 23%
- Using 65nm CMOS technology reduces parasitic capacitance, and allows small sampling capacitors


Low resolution ADC architectures

FLASH

PIPELINED

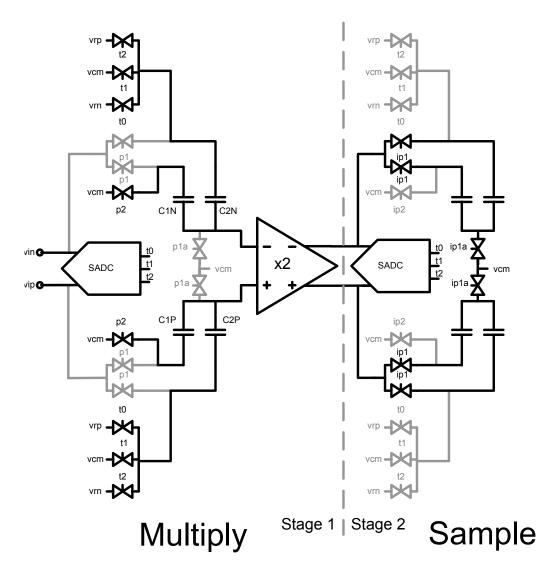
SAR


$\frac{1}{1}$	_	a	~	kT
$v_{thermal}$	=	a	X	\overline{C}

$$C = \frac{48kT2^{2bits}}{V_{max}^2}$$

	Speed	Power	Power/Speed	Input Cap. 6-bit
FLASH	1	2 ^N	2 ^N	640fF
PIPELINED	1/b	c x N	bc x N	d x 10fF
SAR	1/N	1	N	10fF

Pipelined Architecture

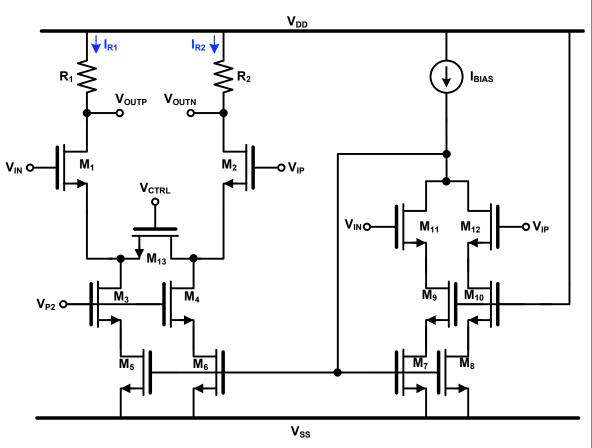


Highlights:

- 65 nm LP CMOS Technology
- Switched capacitor implementation
- 50fF sampling capacitors
- Six 1.5 bit stages + 1.5 bit Flash
- Four phase clock generator
- Switched open-loop amplifiers
- Transmission gates as switches
- Digital error correction in MATLAB

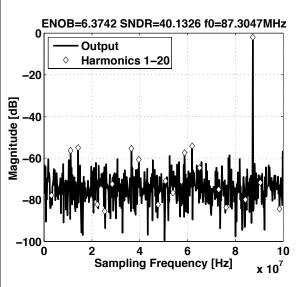
Not Included:

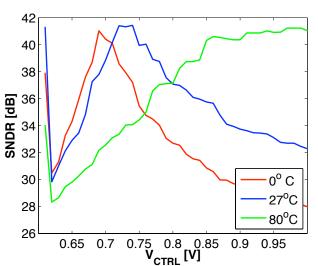
- Reference buffers
- Input buffers and antialias filter

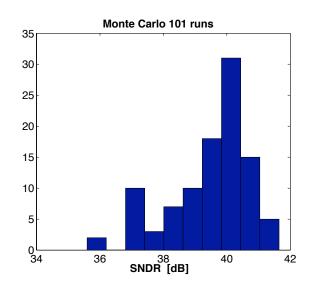


Open-loop amplifier

- Based on Shen07 [2]
- Resistors and I_{BIAS} set the output common mode
- Replica bias keeps I_{R1} + I_{R2} = 2 I_{BIAS}
- Source degeneration (M₁₃) provide gain control
- Switches turn off amplifier when it is not needed
- < 7 bit linearity without calibration


$$V_{CM} = V_{DD} - I_{TOT}(R_1 + R_2)/2$$


$$A_o = \frac{g_{m1}R_1}{1 + \frac{g_{m1}}{2g_{ds13}}}$$



Results

	Arch.	Tech. [nm]	TI	Power [mW]	ENOB [bits]	Fs [MS/s]	Thermal FOM Smaller is better
This work	Pipelined w/OL	65	1	2	~ 6.3	200	~ 1.6 fJ/step
Chen06 [1]	Asynch. SAR	130	2	5.3	5.3	600	5.7 fJ/step
Shen07 [2]	Pipelined w/OL	180	2	105	5.35	800	59 fJ/step

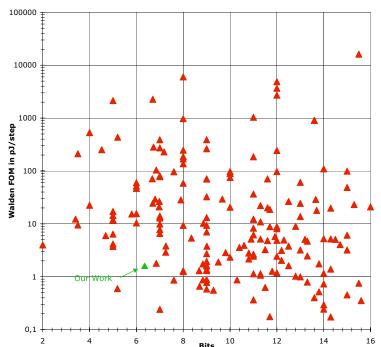
$$FOM = \frac{P_{diss}}{2^{2bits} f_s}$$

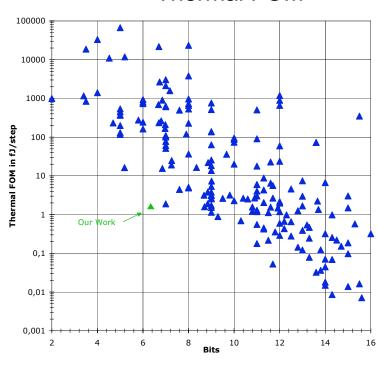
Conclusion

- Reducing parasitic capacitance is the key to high efficiency low resolution ADCs. Use technologies with low parasitic capacitance, like 65 nm CMOS technologies
- A pipelined ADC with switched open-loop amplifiers is an efficient architecture for low resolution ADCs

Turning open-loop amplifiers off during sampling reduces power dissipation

References


- 1. S.-W. M. Chen and R. W. Brodersen, "A 6-bit 600ms/s 5.3mw asynchronous adc in 0.13-µm cmos," IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2669–2679, 2006.
- 2. D.-L. Shen and T.-C. Lee, "A 6-bit 800ms/s pipelined a/d converter with open-loop amplifiers," IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 258–268, 2007.



ADC Figure of Merit

Thermal FOM

$$FOM = \frac{P_{diss}}{2^{bits} f_s}$$

1 bit
$$\rightarrow$$
 double the power

$$FOM = \frac{P_{diss}}{2^{bits} f_s} \qquad C = \frac{48kT2^{2bits}}{V_{max}^2}$$

$$FOM = \frac{P_{diss}}{2^{2bits} f_s}$$

1 bit \rightarrow four times the power

Thermal noise power

Thermal noise power in switched-capacitor circuits is given by

$$\overline{V_{thermal}^2} = a \times \frac{kT}{C}$$

 Sampling capacitor needed to achieve thermal noise power of one fourth of the quantization noise power is given by

$$C = \frac{48kT2^{2bits}}{V_{max}^2}$$

Thermal noise limited: Double the accuracy → Four times the power

Parasitic Capacitance

- Parasitic Capacitance: Any capacitance not required by the operation of the circuit.
- Parasitic capacitance in current nanoscale technology can exceed 10fF per node
- Required input capacitance for thermal noise power at one fourth the quantization noise power at 6-bit level

	0 _o C	80°C
$V_{MAX} = 0.4 V$	4.6fF	6fF

Difficult to get input capacitance down minimum required at 6-bit level Use technologies with low parasitic capacitance like 65nm CMOS

