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1 Why do we need ADCs?

Today we can place more than a billion transistor (1 000 000 000) on a chip. The
majority of transistors are used for digital processing and all digital processing
needs input.

If the input is already digital — a digital photograph, a music file, an excel
sheet, or a video clip — the chip can start processing right away. If the infor-
mation is from the real world — the output from a crash accelerometer, a video
signal, a radio signal, a signal from a microphone, the signal from an ultrasound
probe, or the signal from a electrocardiogram (ECG) — it must be converted
to digital.

The real world is analog — continuous in time and continuous in value. If
you move your arm up and down you will notice that it does not jump from one
place to another, but move in a continuous motion. This is continuous in value.
Continuous in time means that the movement is not a sequence of snapshots.

Digital information is discrete in time and discrete in value. If you move
your arm up and down in a digital world, the arm will jump from one point to
another, and it will be impossible to place it between two points. In addition,
the arm will only jump at specified times.

To convert information from analog to digital we use an analog-to-digital
converter (ADC). The ADC turns continuous time to discrete time, and contin-
uous value to discrete value.

The ADC divide the continuous values into a number of discrete levels. It’s
like rounding a floating point number (1.1 or 1.1204058) to an integer (1). The
number of levels in an ADC are specified by the number of bits (B). A 6-bit
ADC has 26 = 64 levels and a 16-bit ADC has 216 = 65536 levels. The number
of levels is called the resolution and determine the accuracy. ADCs range from
1-bit resolution to 24-bit resolution.

The ADC turns continuous time into discrete time by sampling. Think of
a Black Moor (a goldfish) swimming back and forth in an aquarium. You have
marked 32 points on the glass to mark the horizontal position. At the beat of a
metronome you write down where the fish is. That is sampling, only measuring
something at timed intervals.

In an ADC the intervals are determined by the sampling frequency, written
in samples per second (S/s). ADCs range from 1S/s to 40GS/s (40 000 000 000
samples per second).

It would be nice to have a single 24-bit 40GS/s ADC to cover all applications,
but it can’t be done. Not because we don’t know how to do it, but because
the Heisenberg Uncertainty Principle says it’s impossible [1]. Even if it could
be done we would not want to because a 24-bit 40GS/s ADC will consume 2.8
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million watts 1, 500 times more than an electric stove. At that power dissipation
my cellphone battery would last 3.6ms (0.0036 s).2

This paper give an introduction to ADCs and is organized as follows: Section
2 cover noise and distortion phenomena in ADC converter. Section 3 detail the
measures and abbreviations used when talking about ADCs. In Section 4 we
discuss one of ADC architectures featured in this thesis, the pipelined ADC.

For a deeper introduction to data converters we suggest reading [2], or [3].

2 Limiting factors for ADC accuracy

2.1 Noise

Noise is present in any analog system. Noise sources are often divided into two
categories: intrinsic and extrinsic. Intrinsic refer to an inherent property of the
system. Extrinsic refers to an external influence. In this section we will describe
the Intrinsic phenomena of noise.

Noise manifests as random fluctuation of a signal. There are three main
noise sources: thermal noise, shot noise and flicker noise. Thermal noise stem
from the random fluctuation of charge carriers, shot noise from charge carriers
moving across a potential barrier and flicker noise from the random trapping and
release of charge carriers. Thermal noise and flicker noise are the dominating
noise sources in MOSFET transistors. The dominating noise source in high-
speed analog-to-digital converters (ADCs) is thermal noise. For a comprehensive
treatise on noise phenomena we refer to Aldert Van Der Ziel’s “Noise in Solid
State Devices and Circuits” [4].

Noise place a lower limit on the resolution of a system. The systems discussed
in this thesis are switched-capacitor circuits which have an accumulated noise

1 The required capacitance is given by

C =
48kT22B

V 2
PP

(1)

where k is Boltzmann’s constant, T is the temperature in Kelvin, B is the number of bits,
and VPP is the peak-to-peak signal swing.

If we assume a transconductance amplifier, it needs a transconductance of

gm = 2πCfs (2)

And a current of

I =
1

2
gm× VEFF (3)

where VEFF is the effective overdrive of the transistor that provides the transconductance.

If we assume VEFF = VDD/10, VPP =
1

2
VDD, and P = VDDI, where P is the power

dissipation we have that
P = 19.2πkT22Bfs (4)

which for B = 24, T = 300 and fs = 40GHz is P = 2.8MW
2My cellphone battery has 780mAh. With a current drain of I = P/V = 2.8MW/3.6V =

778kA it would run for 780mAh/778kA = 3.6ms.
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approximated by
V 2
n = a1kT/C (5)

where k is Boltzmann’s constant (1.38 × 10−23), T the temperature in Kelvin,
C the sampling capacitance and a1 a constant.

2.2 Quantization errors

One of the fundamental limitations of Nyquist converters is the quantization
error. Quantization of a continuous value signal is a non-linear operation. We
define the output yQ as

yQ = Q(ya) = ya + qe (6)

where ya is the input signal, Q(x) is the quantization function and qe is the
error signal due to quantization.

2.2.1 The exact solution

The quantization operation distort the input signal. We can write the quanti-
zation error, qe, as

qe = ya − yQ (7)

If the input signal, ya, is a ramp function, the quantization error will be a
sawtooth function.

For a sinusoidal input the quantization error become more complex. For the
N-bit case the quantization error can be written as [5]

yQ =
∞∑
p=1

Ap sin pωt (8)

where ω is the angular frequency, t is time and p is the harmonic index. The
amplitude of the individual harmonics, Ap, is defined as

Ap = δp1A+
∞∑
m=1

2
mπ

Jp(2mπA), p = odd (9)

Ap = 0, p = even (10)

where

δp1 = 1, p = 1 (11)
δp1 = 0, p 6= 1 (12)

and Jp(x) is a Bessel function of the first kind. If we approximate the amplitude
of the input signal as

A =
2n − 1

2
≈ 2n−1 (13)
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where n is the number of bits, we can rewrite (9) as

Ap = δp12n−1 +
∞∑
m=1

2
mπ

Jp(2mπ2n−1), p = odd (14)

Quantization error only contain odd harmonics of the input signal. The
expression in (14) is complex to calculate, and is not suited for a quick approx-
imation of the quantization error.

2.2.2 The approximation

It is generally accepted that for sufficient quantization steps (enough bits) and
an active input signal the quantization error, qe, can be approximated by a
white noise [6]. The quantization error varies between − 1

2LSB < qe <
1
2LSB

and has an average power of q2e = 1
12LSB

2. The quantization error place a
fundamental limit of the resolution of a Nyquist converter with a finite number
of bits. The general expression of signal to noise ratio is

SNR = 6.02B + 1.76dB (15)

where B is the number of bits and we assume a sinusoidal input signal.

2.2.3 The exact solution versus the approximation

A more accurate expression for the dynamic range than (15) of a n-bit converter,
derived from (8) and (14), is

SNR =
2n−1 +

∑∞
m=1

2
mπJ1(2mπ2n−1)√∑∞

i=1 [
∑∞
m=1

2
mπJ2i+1(2mπ2n−1)]2

(16)

In Table 2.2.3 the SNR for 1 to 10 bits in the quantizer is shown [3]. The
approximation (15) overestimates the signal-to-noise ratio. The overestimation
is reduced with a higher number of bits.

2.3 Sampling clock jitter

Sampling is controlled by a clock signal. The clock signal has a frequency (fs)
called the sampling frequency. According to the sampling theorem [7], signal

frequencies at, or below,
1
2
fs can be accurately reproduced from the sampled

data.
How accurate a signal can be sampled depend on the sampling time uncer-

tainty called jitter or clock phase noise. Jitter is a random fluctuation of the
sampling instance. The source of jitter is usually thermal noise in clock buffer-,
amplifier- or generator-circuits [3].

The effect of jitter is more noise. The results can be seen in Fig. 1 and
Fig. 2. In Fig. 1 the sampled spectrum with and without jitter is shown. Note
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Number of bits Accurate SNR Approximate SNR Percent error
1 6.31 7.78 18%
2 13.30 13.80 6%
3 19.52 19.82 3.5%
4 25.59 25.84 2.9%
5 31.65 31.86 2.4%
6 37.70 37.88 2%
7 43.76 43.90 1.6%
8 49.82 49.92 1.1%
9 55.87 55.94 0.8%
10 61.93 61.96 0.3%

Table 1: SNR as function of the number of bits.

that the signal without jitter has finite resolution because we have added noise
to emulate quantization noise. The jitter is simulated as a random fluctuation
of the sampling instant. From Fig. 1 we can see that noise power is increased
when jitter is added. In Fig. 2, signals are shown in time domain. We can see
that the signal with jitter samples an incorrect value from the input signal.

Figure 1: Spectrum with and without jitter in sampling of a sinusoid

It is possible to derive equations for the maximum jitter that can be tolerated
in an ADC. As we can see from Fig. 2, at a specific time t we sample a value
A without jitter, and with jitter we sample a value A + ∆A. For the jitter
not to have an adverse effect on the resolution of the converter, the factor ∆A
must be less than the quantization step of the converter. An expression for the
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Figure 2: Time domain plot with and without jitter in sampling of a sinusoid

maximum jitter, ∆tmax, can be written as (17) [3], where B is the number of
bits and fin is the maximum input frequency.

∆tmax =
1

πfin2B
(17)

Since the amount of jitter depend on the input signal frequency, as shown in (17),
it is imperative that clock amplifiers/buffers in high-speed ADCs are designed
to have sufficiently low jitter.

For a 10-bit pipelined ADC with a 50MHz input the maximum jitter is 6.2ps,
which is trivial to achieve. For a 15-bit ADC with a 15MHz input frequency the
maximum jitter is 0.65ps, which is hard to achieve. The lowest published jitter
(that we could find) in a ADC is 50 femto-seconds (50× 10−15s) [8].

2.4 Distortion

The output, yout, of a ADC for a sinusoidal input can be written as

yout = f(x), x = A cos(ωt) (18)

where f(x) is the system function, A is the amplitude, t is time and ω is the
angular input frequency. For a linear ADC f(x) is approximated by

f(x) = x+ en (19)

where en is a noise component. Thus the output will be

yout = A cos(ωt) + en (20)
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A real multi-bit ADC is non-linear. If the system function is weakly non-linear
we can approximate f(x) using a Taylor series expansion. In this example we
will use a Taylor series expansion around zero. The system function f(x) then
becomes

f(x) = K1x+K2x
2 +K3x

3 + ...+Kix
i + en (21)

where the coefficients Ki is given by

Ki =
1
i!
dif(0)
dx

(22)

We can calculate the output as a function of the input using (21); we will only
include the first three terms.

yout = K1A cos(ωt) +K2A
2 cos2(ωt) +K3A

3 cos3(ωt) + en (23)

By using the well know relation

cos a cos b =
1
2

[cos(a− b) + cos(a+ b)] (24)

we can rewrite (23) as

yout = K1A cos(ωt) +
K2A

2

2
[1 + cos(2ωt)] +

K3A
3

4
[3 cos(ωt) + cos(3ωt)] (25)

For a weakly non-linear system with a single sinusoid input signal we will have
harmonics in the output signal at nω where n is an integer. If we have two
or more sinusoidal input signals there will, in addition to harmonics, be inter-
modulation products at kω1 ± nω2, where ω1 and ω2 are the input signal fre-
quencies and k and n are integers.

Since most analog and mixed signal integrated circuits use differential sig-
naling it is useful to know how distortion behaves in a differential circuit. In
addition to improve signal to noise ratio 3, a differential system suppress even
order distortion. The output of a differential circuit can be defined as:

yout = f1(x)− f2(−x) (26)

where fk(x) are the individual non-linear transfer functions for the differential
paths. We define fk(x) as

fk(x) = K0k +K1kx+K2kx
2 +K3kx

3 (27)
3Signals add linearly when combined after a differential system. A sinusoid with an ampli-

tude of A in the differential paths will have an amplitude of 2A after combination, as shown by
(29). Assuming uncorrelated noise sources in the two differential paths the output noise power
would be e2nout = e2n1 + e2n2, where e2n1 and e2n2 are the noise powers of the differential paths .

If the noise sources have the same power the output root mean square will be enout =
√

2en.
Thus, the signal to noise ratio improves with a factor of

√
2, since

SNR =
2A
√

2en

=
√

2
A

en
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where Kik are the distortion coefficients defined in (22). K0k is the zero or-
der distortion (DC) resulting from for example offsets. When we calculate the
output yout we get

yout = K01 −K02 + [K11 +K12]x+ [K21 −K22]x2 + [K31 +K32]x3 (28)

If Ki1 = Ki2 the equation reduce to

yout = 2K11x+ 2K31x
3 (29)

Equation (29) proves that even order distortion is removed if the distortion in
the in differential paths are equal.

3 Abbreviations and measures

For a thorough definition of the different abbreviations and measures we refer
to chapter 1 and 2 in [3]. This chapter summarizes some of the measures used
when ADCs are discussed.

3.1 MSB and LSB

MSB is the Most Significant Bit and LSB is the Least Significant Bit. The LSB
of a ADC is equal to the converter step.

3.2 INL and DNL

Fig. 3 shows an example of INL and DNL. INL is the Integral Non-Linearity of
a ADC. It is the deviation of the quantization steps from a straight line when
linear errors (offset and gain errors) are removed.

DNL is the Differential Non-Linearity of a ADC. It describes the difference
between two neighboring analog threshold of the ADC.

3.3 SNR

SNR is the Signal-to-Noise Ratio of a system. It is defined as

SNR = 10 log
Signal power

Noise ′power
(30)

3.4 SFDR

SFDR is Spurious Free Dynamic Range. In a FFT it is the difference between
the power of the signal and the most powerful harmonic.
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1 1 1 1

1+DNL1 1+DNL2 1+DNL3 1+DNL4

INL3

INL4

INL1=0

INL2

Analog

Input

Digital 

Output

00

01

10

11

Ideal ADC

Real ADC

[LSB]

[Code]

Figure 3: INL and DNL. Units in LSB

3.5 ENOB

ENOB is Effective Number Of Bits. If we have the measured SNR of an ADC
we can use (15) to get effective number of bits:

ENOB =
SNR− 1.76

6.02
(31)

It should be noted that in data sheets where SNR is given it is sometimes
measured without the power of the first six harmonics. We would get a more
accurate ENOB if we included distortion in the SNR. SNR with distortion is
often named SNDR (Signal to Noise and Distortion Ratio) or SINAD (Signal
to Noise And Distortion).

3.6 ERBW

ERBW is Effective Resolution BandWidth. It is defined as the bandwidth where
the SNR (preferably with distortion) of the ADC stays within 3dB.
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3.7 Aliasing

Aliasing is the folding of signal frequencies higher than the Nyquist frequency
fs/2 into the base-band. Aliasing is mostly an unwanted phenomena. To avoid
aliasing an anti-alias filter is used. This can be a pure analog filter in front of the
ADC, or a combination of analog filtering and digital post filtering. Note that
digital post filtering, in other words filtering after sampling, requires a certain
oversampling of the base-band. If the base-band is limited to fb the sampling
frequency might be at 8fb [3].

4 Pipelined ADC

The pipelined ADC is used for high-speed applications (1MS/s - 1GS/s) with
medium to high resolution (8-bit - 15-bit).

A block diagram of a pipelined ADC can be seen in Fig. 4. The pipelined
ADC is built from multiple stages, normally preceded by a sample-and-hold
(S/H) circuit. In each stage B-bits are determined. A B-bit ADC, called a
sub-ADC (SADC), quantize the input signal to the stage. The quantized signal
is subtracted from the input using a B-bit DAC. The residue after subtraction
is amplified by Gain = 2B so the input swing of the pipelined stage is equal to
the output swing.

Pipelined ADCs use an over-range to correct for some of the non-idealities
in SADC and amplifier. Hence, the sum of the B-bits from each stage is larger
than the resolution of the overall ADC. The most common pipelined stage has
1.5-bits (two comparators).

In the first stage the DAC and amplifier (Gain) need to have full accuracy.
In the subsequent stages the required accuracy is lower due to the accumulated
gain. Therefore, stages 2 through stage n are usually scaled in order to reduce
the power dissipation of these stages.

The number of bits selected for each stage, B, depends on the overall reso-
lution of the ADC and what is possible to implement within the restrictions of
the processing technology.

4.1 Speed of pipelined ADCs

By pipelining stages, the speed of the converter can be equal to the maximum
speed of each stage. Stages in a pipelined ADC normally have two phases:
sampling and amplification.

Stages are clocked with opposite phases, so stage 1 amplifies while stage 2
samples. If the clock period of the overall converter is Ts, then each stage has
Ts/2 for each phase. Sampling normally occurs at the end of a phase, thus stage
1 has Ts/2 to settle before stage 2 samples its output signal.

A new sample is available at the output of the pipelined ADC at the end
of each clock period. Although the pipelined ADC has a large throughput, the
latency (Latency is the time it takes from the analog input signal is sampled to
the digital word is available at the output of the ADC) depend on the number of
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Digital error correction
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Dout

Analog 

input
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p-bit 

ADC

p-bit 

DAC

Gain

Stage 

output

Stage 

input

p-bits

Figure 4: Block diagram of a pipelined ADC

stages. This excludes the pipelined ADC from some applications where latency
is key, for example as a quantizer in a conventional Σ∆ ADC.

4.2 The pipelined stage

The most common pipelined stage has 1.5-bits. With 1.5-bits the SADC is im-
plemented as a flash ADC with two dynamic comparators. An implementation
of a 1.5-bit stage is shown in Fig. 5.

In the SADC there are two comparators with their thresholds at ±Vr/4,
where Vr is the reference voltage. At the end of the sample phase the compara-
tors quantize the input signal. At the same time the input signal is sampled
onto capacitors C1 and C2. An advanced clock phase (p1a) is used to reduce
signal dependent charge injection from p1 switches.

In the multiplication phase the quantized input signal is used to decide which
of the voltages −Vr = VRN , VCM = 0 or Vr = VRP should be connected to the
capacitor C1. The capacitor C2 is connected to the opamp output during the
amplification phase. The opamp forces virtual ground at its negative input,
hence the voltage across capacitor C1 is zero if we assume C1 is connected to
VCM = 0. The charge of C1 is transferred to C2. When the opamp has settled
the output signal is ready to be sampled by the next stage.
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The output of a stage can be written as

vresidue =



(1 +
C1

C2
)Vinput − Vr, Vinput >

Vr

4 (32)

(1 +
C1

C2
)Vinput, −Vr

4 < Vinput <
Vr

4 (33)

(1 +
C1

C2
)Vinput + Vr, Vinput < −Vr

4 (34)

The digital output can be encoded in many ways, we use

pout =


10, Vinput >

Vr

4 (35)

01, −Vr

4 < Vinput <
Vr

4 (36)

00, Vinput < −Vr

4 (37)

p1

p1

ip
1
a

t[0-2]
SADC DAC

p2

C2C1

ip1a

p2

p1

t0

t1

t2

VRP

VCM

VRN

DAC

Input

OutputDigital Output

Figure 5: Implementation of a 1.5-bit stage

4.3 Error correction in pipelined ADCs

Assume that one of the comparators in the SADC has an offset that makes its
threshold larger than Vr/4, for example 1.5Vr/4. If the input value of stage 1
is 1.2Vr/4 the SADC will incorrectly decide that the quantized word should be
“01” and not “10”, which would be correct. The output value of stage 1 would
be 2 × 1.2Vr/4 = 1.2Vr/2. Stage 2 will then decide that the quantized word
is “10”, even if it has the same offset in the SADC. To combine stage output
words they are shifted and summed leading to

Stage 1: 01
Stage 2 MSB: 1
Corrected Stage 1: 10
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Thus a 1.5-bit pipelined stage can tolerate an offset in comparators up to ±Vr/4,
greatly reducing the required accuracy of the SADC.

4.4 Reducing power in pipelined ADCs

The sample-and-hold in front of the converter and the opamps in each stage
dissipates most of the power in a pipelined converter. The opamp in a stage is
only used during half the clock period. Techniques have been developed that
switch off the opamp during half the clock period to reduce power dissipation,
however this technique is normally not suitable for high-speed designs due to
the slow turn on time of high-speed opamp. Another technique is to share an
opamp between two stages [3].

4.5 Effects of finite gain

Finite gain in the amplifier cause leakage of the residue to the digital output.
Assume a 1 bit pipelined stage with a B-bit ideal back-end. The output signal
of the ADC is given by

yo = D0 +
1
2
DB (38)

where D0 is the digital output from the first stage and DB is the digital output
from the back-end. The digital output from the first stage can be written as

D0 = vi + e0 (39)

where vi is the input signal, and e0 is the quantization error of the first SADC.
The output of the back-end can be written as

DB = vr + en (40)

where vr is the residue from the first stage, and en is the quantization error of
the back-end.

The residue for a 1 bit stage can be written as

vr = 2(1 + εg)(vi −D0) (41)

where εg is the gain error.
Combining (38) through (41) yields

yo = vi + εge0 +
1
2
en (42)

The quantization error of the SADC leaks through to the output. This error
is not white, because the quantization error of a low bit converter is not white.
Accordingly, harmonics are introduced in the output of the converter.
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4.6 Pipelined ADC summary

A switched capacitor amplifier, like the one used in 1.5-bit stage, requires a high-
gain opamp. In the first stage the gain must be higher than the resolution of the
pipelined ADC. For example, for a 10-bit converter we need 68-dB gain in the
first stage opamp. High-speed, high-gain opamps have high power dissipation
and are difficult to implement in modern nano-scale processes. Too low gain in
the opamp leads to incorrect settling of the switched-capacitor amplifier, so the
gain is less than 2 for a 1.5-bit stage.

Due to the architecture of the pipelined converter this leads to non-linear
distortion.

Techniques like correlated level shifting [9], open-loop residue amplifiers [10],
gain calibration [11], [12] and comparator-based switched capacitor circuits
(CBSC) [13] have been developed to either make the opamp easier to design, or
replace the opamp completely.
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