
I nt roduct i on to SystemDotNet

By Car st en Wul f f (wul f f @i et . nt nu. no)

Mixed-Signal Simulation
For a long time simulation of integrated circuits was divided into two camps; one for

analog simulation that used SPICE and one for digital simulation that used VHDL or
Verilog. In the resent years a need for behavioral simulation of large mixed-signal
systems has spanned a new class of simulators. The major contenders are SystemC,

VHDL-AMS and Verilog-AMS. We use SystemC for behavioral simulation of mixed-
signal systems in several courses, but since SystemC is based on C++ the learning
threshold for a new student is quite high. With much experience with .NET technology

and the supremacy of this technology when it comes to seamless integration between
windows application and web application we decided to create a new mixed-signal
simulator. The simulator is based on the principles of SystemC where the simulator is

compiled with the circuit description. It is also based on the article “ .NET framework - a
solution for the next generation tools for system-level modeling and simulation” [1].

SystemDotNet Simulation Core
The simulation core can roughly be divided into 4 portions a shown in Figure 1; Event

queue and simulator control, signals, modules and output writers. The classes in Figure 1
are the essential classes in the simulation core.

Figur e 1 Si mulat i on cor e over vi ew

Basi c pr i ncipal of simulati on core

In an event driven simulator we have three main objects; event queue, signals and stuff

that happens when signals change. Think of the event queue as grand old man that has
full control over when things should change. Every time we write to a signal we ask the
old man to put the change into his queue and execute it at the right time. The old man has

a master clock that everything follows, the algorithm used in SystemDotNet can be seen
in Figure 2. We start by setting the current time to next time, the first time this happens

the next time is 0. We then check if there are any events scheduled for this time step, if
there are we remove them from the event queue en execute them. Next we f ind the next

time step if there is one and the process starts all over again. Unlike most event driven

simulators the event queue in SystemDotNet is not a sorted list. The event queue is a
named collection. Figure 3 shows visualization. A conventional queue contains events

that are inserted sorted into the queue, for each step the simulator pops an event and runs

it. In SystemDotNet all events that happen at the same time are stored in a list. This list is
referenced by the time the event is to occur. We have experimented with a conventional
queue but it did not give a speed advantage for the circuits we tried.

Fi gur e 2 SystemDotNet al gor i thm

Fi gur e 3 Event queue pr i nci pl e

The objects in the event queue are of type Ti meEvent , which inherit I Runnabl e. this class

holds a Si gnal Val ueHol der and an object. Si gnal Val ueHol der is a class used in Si gnal
and Si gnal Col l ec t i on to hold the value of the signal. When the Ti meEvent is executed the

value of Si gnal Val ueHol der is set to the object. This f ires a changed event on the signal
where the value has changed. This event must in some way be wired to
processes/methods (stuff that happens when a signal change). In SystemDotNet this event

listening can be done in two ways; direct or indirect. To better understand lets look at two
modules that use these methods. Modules are classes that define a circuit cell (or block).

The rules for Modules are; they must inherit Modul eBase or a subclass of Modul eBase and
all signals available outside the class (often called ports) must be public f ields. The code
is show in Figure 4 and Figure 5. If we look at Figure 4 we can see the definition of a

module. We first have a line with the class name and the inheritance (Modul eBase). The

definition of the Cl k signal follows after which we have the constructor. In this
constructor we add the Next () method to the Cl k. Changed event. This means that when

the Cl k. Changed event is called, the Nex t () method is run. The method Fi r s t () is
overridden from ModuleBase and is run before the simulation starts. This is to make sure

that the event queue has some events before it starts, otherwise it will stop immediately.
In Figure 5 you can see there is no constructor, but a new definition has been added over

the Nex t () method, [Pr ocess(” Cl k”)] . This is called an attribute and is a C# native

construct. Attributes can be used to add Meta information to methods. The
ProcessAttribute marks the method as a process and the ” Cl k ” parameter tells the

simulator to try to connect this method to the change event of the signal Cl k. The two

methods are equivalent, but the indirect listening is the preferred one because it is simpler
to write and more visually pleasing. The last block in Figure 1 is the output writers. Two

main output formats are implemented in SystemDotNet, VCD (IEEE Std 1364–2001) and
CSV (Comma Separated Values). The VCD files can be opened in ModelSim or

GTKWave. The CSV files can be parsed using Excel or Matlab.

 publ i c c l ass Clock : ModuleBase
 {
 publ i c Signal<bool > Cl k = new Signal<bool >() ; / / Cl k si gnal

 publ i c Clock()
 {
 Cl k. Changed += new EmptyHandler(Next) ; / / Di r ect l i st eni ng
 }

 publ i c over r i de voi d Fi r s t ()
 {
 Cl k. Wr i t e(t r ue, 200) ;
 }

 publ i c voi d Next ()
 {
 Cl k. Wr i t e(! Cl k . Read() , 200) ;
 }
 }

Fi gur e 4 D i r ect L i stening

 publ i c c l ass Clock : ModuleBase
 {
 publ i c Signal<bool > Cl k = new Signal<bool >() ; / / Cl k si gnal

 publ i c over r i de voi d Fi r s t ()
 {
 Cl k. Wr i t e(t r ue, 200) ;
 }

 [Process(" Cl k")] / / I ndi r ect l i s t eni ng
 publ i c voi d Next ()
 {
 Cl k. Wr i t e(! Cl k . Read() , 200) ;
 }
 }

Fi gur e 5 I ndi r ect L i steni ng

Pipel ine Simulation
A behavioral description of a pipeline analog to digital converter was created in

SystemDotNet. Pipeline converters are a popular architecture for analog to digital
conversion. This class of converters can suffer from mismatch during production that

leads to gain errors in multiplying stages of the converter. These gain errors (especially
from the f irst stage) reduce the signal to noise ratio of the converter significantly. Using
the web application the user can easily see how the signal to noise ratio changes as we

change the gain error. Figure 6 shows the user interface and the result for ideal pipeline
converter. Figure 7 shows the result for 10 % gain error in the first stage, we can clearly
see the degradation of the signal to noise ratio. The signal is the spike at 5MHz.

Fi gur e 6 Pipel i ne ADC conver ter I deal

Fi gur e 7 Pipel i ne ADC conver ter 10% gain er r or fi r st stage

References

[1] Lapalme, J.; Aboulhamid, E.M.; Nicolescu, G.; Charest, L.; Boyer, F.R.;
David, J.P.; Bois, G. “ .NET framework - a solution for the next generation tools

for system-level modeling and simulation” , Design, Automation and Test in

Europe Conference and Exhibition, 2004. Proceedings , Volume: 1 , 16-20 Feb.
2004. Pages:732 - 733 Vol.1

