Errata

Unfortunately some errors were missed during proofreading of the PAnIC thesis. This is a summary of the errors and their corrections.

Page 4, 1.7, line 3:	module	=>	modules
Page 13, 2.10, line 4, word 4:	noise	=>	noise types
Page 13, 2.12, line 2 word 3:	aGlobOut0	=>	aGlobOut0-3
Page 14, Table 10, row 3:	aGobIn0-3	=>	aGlobIn0-3
Page 21, Example, line 6:	[0010 0000/010]	=>	[0001 0000/010]
Page 23, Table 15, row 25:	OTA	=>	DiffBuff
Page 27, line 2, last word:	module	=>	modules
Dece 07 Table 17. Table is uman	a compact table above	halarr	

Page 27, Table 17: Table is wrong, correct table shown below

Table 1 TOC content

address	content	description
00000 000	0000 0001	Sample and hold
00000 001	0000 0001	sub nr
00001 000	0000 0010	Comparator
00001 001	0000 0001	sub nr
00010 000	0000 0011	Differential buffer
00010 001	0000 0001	sub nr
00011 000	0000 0100	Bandgap voltage reference
00011 001	0000 0001	sub nr
00100 000	0000 0101	8-bit DAC
00100 001	0000 0001	sub nr
00101 000	0000 0101	8-bit DAC
00101 001	0000 0001	sub nr

Page 30, IRS_Digital, last sentence: Redundant, it should have been deleted. Page 30, ORS_Digital, second last sentence: Redundant, it should have been deleted. Page 31, Table 24, last row: Redundant row, it should have been deleted. Page 39, S 7.1, line 2: missing comma after "SPI interface" Page 46, TOC verification, last line: "000100 000" => "00100 000" Hovedoppgave ved Institutt for Fysikalsk Elektronikk

Programmable Analog Integrated Circuit w/ table of content

Carsten Wulff NTNU 2002

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET FAKULTET FOR INFORMASJONSTEKNOLOGI, MATEMATIKK OG ELEKTROTEKNIKK

HOVEDOPPGAVE

Kandidatens navn:	Carsten Wulff
Fag:	Fysikalsk elektronikk
Oppgavens tittel (norsk):	Programmable analog integrated circuit (PAnIC) w/ table of content
Oppgavens tittel (engelsk):	Programmable analog integrated circuit (PAnIC) w/ table of content

Oppgavens tekst:

Research has been done on remote laboratories at NTNU since the late 1990's. The Next Generation Laboratory, developed at NTNU during the summer of 2001, has limitations on the number of circuits available for measurement. The assignment is to develop an integrated circuit that can provide flexibility to our remote laboratory through circuit programmability. The project is to be based on a SystemC model developed in the PAIC project. The key criteria of the project are the three features:

- Selection of different circuits to measure
- Ability to combine circuits to form larger circuits
- Self-consistency through a table of content

The operation of the PAnIC is to be verified through simulations and the final layout is to be submitted for prototype production.

Oppgaven gitt:	15. januar 2002
Besvarelsen leveres innen:	19. november 2002
Besvarelsen levert:	19.november 2002
Utført ved:	Institutt for fysikalsk elektronikk
Veileder:	Trond Ytterdal

Trondheim, 19. november 2002

Trond Ytterdal

Abstract

The specification, design, implementation and verification of a programmable analog integrated circuit (PAnIC) with table of content is presented. The architecture of PAnIC is explained and proven through simulations to be a self-consistent programmable analog integrated circuit. The PAnIC offers extended flexibility, through circuit programmability, to our remote laboratory concept [1].

Preface

This master thesis describes the development of a programmable analog integrated circuit (PAnIC) with table of content from a SystemC [2] model to tape-out. The SystemC model was written as part of a pre-project to PAnIC called PAIC [3]. The purpose of the PAIC project was to develop a viable architecture for a programmable analog integrated circuit with table of content. Carsten Wulff has carried out the PAnIC project at the Norwegian University of Science and Technology, Department of Physical Electronics. The purpose of the project is stated below:

Develop an integrated circuit based on the PAIC SystemC model. It should contain cells that allow it to "build" an analog to digital converter (ADC)

There are many people that deserve thanks for their contribution. These are some of them:

- Anita Melvold for always providing essential support when there was no end in sight.
- Trond Ytterdal for always being available for questions, for getting the idea for PAnIC and for funding the PAnIC production
- The students in Analog CMOS2 course for designing the IP modules for PAnIC.
- Tore Barlindhaug for asking the right questions and giving good answers.
- Alf-Egil Edvardsen & Andrew C.O. Wandera for bringing the analog cells to tape-out readiness and sparring on Mentor Graphics.
- Kristin Wulff for proofreading and providing a fresh perspective.
- Egil Wulff for coming up with the name PAnIC.

Carsten Wulff (carsten@wulff.no), November 2002

Table of content

Abstrac	et	I
Preface	·	I
Table o	f content	II
List of	figures	IV
List of	tables	V
CD-RO	PM content	VII
1. Int	troduction	1
1.1	Motivation & Background	1
1.2	Programmable analog integrated circuits	2
1.3	System Architecture	3
1.4	Definitions	3
1.5	PAIC project	4
1.6	PAnIC Project	4
1.7	Table of content (TOC)	4
1.8	Learning PAnIC connections	5
2. Sp	ecification	6
2.1	Pin description	6
2.2	Data Interface	8
2.3	Control	8
2.4	Routing Network	9
2.5	Analog cells	9
2.6	Process	
2.7	Area	
2.8	Power	
2.9	Speed	
2.10	Noise	
2.11	Bias currents	
2.12	Functional Description	
2.13	Test description	
3. Ve	erification Plan	
3.1	Verification of digital functions	
3.2	Verification of routing network	15

3.3	Mixed-Signal verification	
3.4	Timing Verification	
3.5	Layout verification	
4. De	sign	
4.1	Design methodology	
4.2	PAnIC architecture	
4.3	Using PAnIC	
5. Im	plementation	
5.1	Top Level	
5.2	Panic_Control	
5.3	Analog Module Framework	
5.4	Support circuitry	
6. PA	nIC layout	
6.1	Dimensioning power	
6.2	Making stable power	
6.3	Guard-rings	
7. Ve	rification	
7.1	Verification of digital functions	
7.2	Verification of routing network	
7.3	Mixed-Signal Verification	41
7.4	Layout verification	
8. Dis	scussion & future work	
8.1	Area	
8.2	Netlist extraction from layout	49
8.3	Near Future	
8.4	Next generation of PAnIC	
9. Co	nclusion	51
10.	References	
Append	ices	1
Appe	ndix I: Successive Approximation ADC	I - 1
Appe	ndix II: Serial Peripheral Interface	II - 1
Appe	ndix III: Schematics	III - 1
Appe	ndix IV: LVS	IV - 1
Appe	ndix V: Excerpt from PAIC project report	V - 1
Appe	ndix VI: NGL paper	VI - 1
Appe	ndix VII: PAnIC paper	VII - 1

List of figures

Figure 1 Programmable analog circuit concept	2
Figure 2. System Architecture	3
Figure 3 PAnIC symbol	6
Figure 4 Differential buffer diagram	10
Figure 5 Possible input connections	13
Figure 6 Design Flow	18
Figure 7 PAnIC block diagram	20
Figure 8 ADC block diagram	22
Figure 9 Timing diagram for the SPI module	
Figure 10 Example power routing	
Figure 11 Guard-ring cross-section	37
Figure 12 PAnIC layout with pads	
Figure 13 DAC1 functional verification	41
Figure 14 Bandgap voltage reference functional verification	42
Figure 15 Sample & hold functional verification	42
Figure 16 Comparator functional verification	43
Figure 17 Differential buffer functional verification	44
Figure 18 ADC8 functional verification	45
Figure 19 Excerpt from TOC functional verification	46
Figure 20 Excerpt from readback of comparator functional verification	47
Figure 21 Excerpt from SPI functional verification	47

List of tables

Table 1 Pin description	7
Table 2 Control signals	8
Table 3 Routing network specification	9
Table 4 Differential buffer ports	10
Table 5 Sample & Hold ports	10
Table 6 Bandgap voltage reference ports	11
Table 7 Comparator ports	11
Table 8 DAC ports	12
Table 9 PAnIC acceptable power range	12
Table 10 Tests to be performed on PAnIC chip	14
Table 11 Module Address	22
Table 12 Line Address	22
Table 13 Module endpoints	22
Table 14 ORS routing functions	23
Table 15 IRS routing functions	23
Table 16 Cells in PAnIC	24
Table 17 TOC content	27
Table 18 IoFallBack states	27
Table 19 SPI states	
Table 20 Control states	29
Table 21 IRS_Digital states	
Table 22 ORS_Digital states	
Table 23 IRS_analogv2 states	31
Table 24 ORS_analog states	
Table 25 Power used in AMF cells	
Table 26 Power and current used in AMF	
Table 27 Power and current used in Panic_Control and sub-cells	
Table 28 Current estimation for cells	
Table 29 Size power nets	
Table 30 Power calculations on Figure 10	
Table 31 irs_cellv2 results	
Table 32 ORS analog results	40

Table 33 outpu	tbuff results			40
----------------	---------------	--	--	----

CD-ROM content

The PAnIC CD-ROM contains the following:

- PAnIC Thesis (this document)
- PAnIC GDS II
- PAnIC schematics (as EPS)
- PAnIC VHDL source
- PAnIC SPICE source
- PAIC report
- Mixed Signal design using Mentor Graphics
- Next Generation Lab a solution for remote characterization of analog integrated circuits (ICCDCS 2002).
- Programmable analog integrated circuit for use in remotely operated laboratories (ICEE 2002).

1. Introduction

This chapter gives an introduction to the PAnIC project and the essentials to understand the architecture. We will start by presenting the motivation and background for the project.

1.1 Motivation & Background

Laboratory experience is considered an important part of the curriculum when educating designers of analog (and digital) integrated circuits. Providing laboratory experience to students, especially in the more advanced courses, is costly for a university. This is mostly due to the cost of acquiring measurement equipment that holds an industrial standard. If a university were to equip a laboratory to serve 30 students the cost could easily run into the millions. For example, a Rode & Swartz Vector Network Analyzer for measuring the frequency response of circuits costs around 400 kNOK, purchasing 15 of these, assuming 30 students working in pairs, would come to 6 MNOK. Few universities would consider using that amount of money on a laboratory used by one course. Remotely operated laboratories provide a cost advantage to the conventional laboratory. In a remote laboratory we can use one set of instruments, instead of 15, and still provide students with concurrent access. Remotely operated laboratories have been explored in [1], [4]-[10]. Already there are remote laboratories that enable a student to make measurements on integrated circuits over the Internet. These laboratories often have a limitation on what types of integrated circuits or devices the student has access to.

The Next Generation Lab (NGL) [1,10] was developed at Department for physical electronics at NTNU during the summer of 2001. The NGL can currently measure the frequency response of nine operational amplifiers. The NGL has been presented at the International Caracas Conference on Devices, Circuits and Systems (ICCDCS-2002), the paper [1] is included in Appendix VI. Towards the end of the development there was discussion on were to go next. We wanted to provide students with greater freedom by allowing them to select from a wide range of circuits. It was possible to do this by using switching matrices, as used in LabOnWeb [9], but these

are quite expensive and we wanted to explore other possibilities. In addition we wanted students to be able to create a larger circuit by combining the selectable circuits.

We decided that it should be possible to do this with a programmable analog integrated circuit.

1.2 Programmable analog integrated circuits

The concept of a programmable analog circuit is to have an integrated circuit with "standard" cells, which can be wired into an analog circuit i.e. a filter or an amplifier. Figure 1 shows a very simple example of a programmable analog circuit. By controlling a routing network that can connect the analog cells to each other, we can "build" analog circuits.

Programmable analog circuits have been reported since the early nineteen nineties. The earliest reference at IEEE is from 1991 [11]. Several manufactures have made programmable analog circuits, among these are Motorola, IPM Inc, Lattice and Anadigm. Several designs of Field Programmable Analog Arrays (FPAA) have been reported [11]-[14], but these are often aimed at a commercial market as an analog counterpart to Field Programmable Gate Arrays (FPGA) for rapid prototyping of analog circuits. The marked for these FPAA have not gained the same momentum as FPGA, this because of the much greater challenges involved in creating a FPAA. One of the main challenges in creating FPAA is the fact that analog circuits do not have a smallest common denominator. Digital circuits can (in theory) be created from NAND gates regardless of the complexity of the circuit. To circumvent this obstacle one can create expert cells [13, 14], where each analog cell has a set of tunable parameters i.e. a filter with tunable cut-off frequency. These expert cells are designed by analog designers and are guaranteed to operate within specification regardless of how they are connected to other cells. It is a modification of this approach that PAnIC has taken.

Figure 1 Programmable analog circuit concept

1.3 System Architecture

The system architecture where the PAnIC chip is going to be used is presented in Figure 2. A web-server is connected to a microcontroller and instruments. The instruments can range from simple multi-meters to advanced network analyzers. The instruments are connected to a circuit board that holds several PAnIC chips. Each PAnIC has a set of analog cells that can be selected alone, or wired together to create a more complex circuit. A student connects to the web-server and gets a graphical user interface that contains a toolbox with all analog cells. The student designs a circuit from the analog cells in the toolbox and submits the circuit to the web-server. The web-server configures the PAnIC chips, through the microcontroller, to create the circuit the student requested. Then it performs measurements on the circuit and returns the result to the student.

Figure 2. System Architecture

1.4 Definitions

"Analog cell" is used to describe the analog blocks i.e. a comparator or a sample & hold. An "analog framework" is a framework that consists of several blocks that provide control and input/output switching for the analog cell. "Analog module" is the "analog framework" with an "analog cell".

Introduction

1.5 PAIC project

To investigate possible solutions, a preliminary project [3] was performed during the fall of 2001. The assignment was to develop a viable architecture for a programmable analog integrated circuit that contained information about the analog cells in the circuit and how these cells must be connected to perform a specific function. The concept was to be verified by defining a specific circuit, which was to be modeled and simulated on a functional level. The modeling of the PAIC circuit was done in SystemC and an architecture that met the goals was found. If the reader is unfamiliar with the PAIC architecture it is advisable to read the Design chapter of the project report after reading this introduction. The design chapter has been included in Appendix V for your convenience. The PAIC results were presented at the International Conference on Engineering Education (ICEE-2002), the paper [15] is included in Appendix VII.

1.6 PAnIC Project

This project was started January of 2002 and is the continuation of the PAIC project. The project has been renamed to PAnIC, as we felt it was a more suiting name. PAnIC was aimed at taking the SystemC model and creating an integrated circuit, which was to be produced at the end of fall of 2002.

1.7 Table of content (TOC)

Each analog module in PAnIC chip has an 8-bit address. This address is used in combination with an 8-bit data packet to control how the module is connected to other module. To know which type of analog cell the module at a specific address contains, the PAnIC has a table of content (TOC). From the system architecture we remember that the PAnIC is to be used by a web-server through a micro-controller. To make this possible the web server has to have information on what analog cells the PAnIC contains. The web-server can ask the micro-controller to retrieve a list of the analog cells and their respective addresses. It can store this information locally on disc or other storage for later use. Each entry is an 8-bit number, which defines the analog cell type, and an 8-bit sub number that defines a specialization of the analog cell type. The web server must thus contain a look-up table where a complete definition of the analog cell resides.

1.8 Learning PAnIC connections

In addition to knowing the type of analog cell and which address it resides at, the web-server needs to know what connections the PAnIC chip can perform. The PAnIC provides a feature, called "ReadBack", that allows the micro-controller to read the connections between the analog modules. Normally the analog cell will be connected through an output register & switch (ORS) to an input register & switch (IRS) of another analog module in the PAnIC. A simple algorithm in the micro-controller can read this connection.

Pseudo code for reading back physical connections:

```
reset PAnIC
foreach module{
   foreach ORS{
      Set output low
   }
}
foreach module{
  foreach IRS{
      foreach module{
          foreach ORS{
             Set output high
             Read from IRS
             if(data from IRS contains a one) {
                store output
              }
             Set output low
          }
       }
   }
}
```

This algorithm is time consuming since it has to iterate through each IRS and ORS on the chip, but with minimal programming in the micro-controller it can provide the web server with information on all connections inside the PAnIC. After reading the list the web server can store the information on disk for faster access.

2. Specification

This chapter presents the specification of the PAnIC chip.

2.1 Pin description

This section describes the pins and their function. Figure 3 shows the PAnIC symbol and Table 1 contains the pin description. The power pins have only been shown once, but there shall be 3 VDD pins, 3 VDD3V pins and 3 VSS pins to provide enough current and stable supply voltage to PAnIC.

Figure 3 PAnIC symbol

Table	1	Pin	description
-------	---	-----	-------------

Pins	Direction	Туре	Function
cntr0	in	digital	Control signal 0
cntr1	in	digital	Control signal 1
cntr2	in	digital	Control signal 2
reset	in	digital	Active low reset
enable	in	digital	Active high enable
cntr_io0	in	digital	Secondary data interface control signal 0
cntr_io1	in	digital	Secondary data interface control signal 1
mosi	in	digital	Primary data interface, master out, slave in
SS	in	digital	Primary data interface, start transmission
sck	in	digital	Primary data interface, transmission clock
miso	out	digital	Primary data interface, master in, slave out
VSS		power	Ground
aGlobIn0	in	analog	Analog input 0
aGlobIn1	in	analog	Analog input 1
aGlobIn2	in	analog	Analog input 2
aGlobIn3	in	analog	Analog input 3
aGlobOut0	out	analog	Analog output 0
aGlobOut1	out	analog	Analog output 1
aGlobOut2	out	analog	Analog output 2
aGlobOut3	out	analog	Analog output 3
dac2_rp	in	analog	DAC 2 positive reference voltage
dac1_rp	in	analog	DAC 1 positive reference voltage
dac2_rn	in	analog	DAC 2 negative reference voltage
dac1_rn	in	analog	DAC 1 negative reference voltage
comp_clk	in	digital	Comparator clock input
sh_clk	in	digital	Sample & hold clock input
sh_inv_clk	in	digital	Sample & hold inverted clock input
sh_inv_clk_del	in	digital	Sample & hold delayed inverted clock
			input
Ibn100uBuff	in	analog	Internal buffer bias current input, 100µA
Ibn100uOBuff	in	analog	Output buffer bias current input, 100µA
Ibn100u	in	analog	Analog cell bias current input, 100µA
panic_io7	inout	digital	Secondary data interface signal 7 (MSB)
panic_io6	inout	digital	Secondary data interface signal 6
panic_io5	inout	digital	Secondary data interface signal 5
panic_io4	inout	digital	Secondary data interface signal 4
panic_io3	inout	digital	Secondary data interface signal 3
panic_io2	inout	digital	Secondary data interface signal 2
panic_io1	inout	digital	Secondary data interface signal 1
panic_io0	inout	digital	Secondary data interface signal 0 (LSB)
VDD		power	PAnIC power
VDD3V		power	Analog cell power

2.2 Data Interface

The data interface is an essential part of the PAnIC architecture. Without a functioning data interface the PAnIC is useless. Therefore, the PAnIC shall be designed with two separate and independent data interfaces. The primary data interface shall be a Serial Peripheral Interface (SPI), which is a commonly used interface in micro-controllers (explanation of the interface in Appendix II). The second data interface shall be an 8-bit input/output bus. The direction of this bus and what signal it taps into shall be controlled by cntr_io0 and cntr_io1.

2.3 Control

The state of PAnIC shall be controlled through a 3-bit control bus (cntr). The state shall decide what function PAnIC performs. Table 2 describes the different signals and their corresponding state. Two of the states have an 8-bit data packet associated with them, these are "load address" and "load data" the other two produce data that can be read through the data interface.

cntr	State	Description
000	IDLE	No operation
001	Load address	Loads the current data value into the address register
010	Load data	Loads the current data into the register defined by the current
		address
011	ReadBack	Does a readback of the IRS defined by the current address
100	TOC	Reads the TOC word at the location defined by the current address
101	IDLE	No operation
110	IDLE	No operation
111	IDLE	No operation

Table 2 Control signals

2.4 Routing Network

The routing network connects the analog cells to the aglobin0-3, aglobout0-3 signals and to each other. The routing network consists of input switches, output switches, internal buffers and output buffers. The routing network specifications shown in Table 3.

Name	Spec	
Signal swing	0-3V	
Internal buffer capacitive load	< 5pF	
Output buffer capacitive load	< 50pF	
Internal buffer resistive load	No resistive load	
Output buffer resistive load	No resistive load	
Internal buffer slewrate	> 8V/µs	
Output buffer slewrate	$> 8V/\mu s$	
Routing network bandwidth	> 30MHz	
Phase shift up to 1MHz	< 5 degrees	
Phase shift at 30MHz	< 95 degrees	
Switch damping when off	> 50dB	

Table 3 Routing network specification

2.5 Analog cells

Students in the course Analog CMOS 2 during the spring of 2002 designed the analog cells that were going to be used in PAnIC. These were a Differential Buffer, a Sample & Hold, a Bandgap voltage Reference, a Comparator and an 8-bit DAC. The DAC designed by the students was not finished when it needed to be because of problems with the computer aided design software. There was no time to complete them after the software problems were fixed, instead we chose to use an 8-bit DAC included in the analog cell library of the foundry. A description of each analog cell follows.

Differential Buffer (DiffBuff)

The differential buffer is an operational transconductance amplifier with four capacitors. The buffer has a –6dB dampening up to 10MHz and the –9dB frequency is at 80MHz. A simplified schematic is shown in Figure 4. The port map for the differential buffer is shown in Table 4.

Figure 4 Differential buffer diagram

Port	Direction	Туре	Description
vin_p	in	analog	positive input
vin_n	in	analog	negative input
ibp5u	in	analog	5uA bias current
vout_p	out	analog	positive output
vout_n	out	analog	negative output
vdda		power	2.7 – 3.3V
vssa		power	ground

Sample & Hold (SH)

This circuit is implemented with clocked folded cascode operational amplifiers. It is pseudo differential and can be used as a single ended or differential sample & hold. The port map is shown in the table below.

Port Direction Description Туре vdda 2.7 – 3.3 V power vssa power Ground Negative input analog vin_n in Positive input vin_p in analog Ibp5u 5uA bias current in analog inv_clk_del in digital Delayed inverted clock inv clk in digital Inverted clock clk Clock in digital analog negative output vout_n out analog positive output vout_p out

Table 5 Sample & Hold ports

Bandgap Voltage Reference (BGR)

The bandgap voltage reference is based on two diode connected NMOS transistors and delivers a reference voltage of 1.2V + 40mV within the range -40 to 85 degrees Celsius. It also delivers a reference voltage that is proportional to absolute temperature (0.6V at room temperature). The table below describes the ports of the bandgap voltage reference.

Port	Direction	Туре	Description
vdda		power	2.7 – 3.3 V
vssa		power	ground
vref	out	analog	reference voltage
v_ptat	out	analog	reference proportional to absolute temperature

Table 6 Bandgap voltage reference ports

Comparator (COMP)

The comparator is a latched comparator with differential output. The circuit consists of a fully differential amplifier followed by a gain stage and by a positive feedback latch in a track and latch configuration. The resolution is 0.5 mV in a range between 765 mV and 2.77V with a power supply of 3V. The table below describes the ports of the comparator.

Port	Direction	Туре	Description
vdda		power	2.7 – 3.3 V
vssa		power	ground
vin_p	in	analog	positive input
vin_n	in	analog	negative input
ibn5u	in	analog	5uA bias current
clk	in	digital	Sampling clock
vout_n	out	analog	negative output
vout_p	out	analog	positive output

Table 7 Comparator ports

8-bit digital to analog converter (DAC)

The DAC is based on two resistor dividers. The signals rn and rp set the negative and positive range of the DAC. The output is given by vdacout = (vrp - vrn)/256 * codein + vrn. The table below describes the ports of the DAC.

Ports	Direction	Туре	Description
dacin(7:0)	in	digital	digital input
dacout	out	analog	analog output
rn	in	analog	negative reference
rp	in	analog	positive reference
vdda		power	4.5 – 5.5 V
vssa		power	ground

Table 8 DAC ports

2.6 Process

The PAnIC shall be produced in AMS 0.6µm mixed mode twin-well CMOS process with three layers of metal, high resistive poly and double poly capacitors. The process is made available through a Multi-Project Wafer (MPW) run organized by Europractice [16].

2.7 Area

The area of the finished PAnIC is not critical, but it should not exceed 10 mm², which is the minimum area of a design in the MPW run.

2.8 Power

The power consumption of PAnIC will not be specified, but calculations are to be performed to ensure that the PAnIC layout can supply the cells with the power they need. Two single ended power supplies shall power PAnIC. The first is for the analog cells and the second is for powering the rest of PAnIC. The table below describes the acceptable power range.

Name	Range
VDD	4.8-5.2V
VDD3V	2.8-3.2V

Table 9 PAnIC acceptable power range

Specification

2.9 Speed

No high performance demands are set on the PAnIC, but it should be capable of supporting clock speeds on the COMP module up to 1MHz.

2.10 Noise

Noise like thermal noise, charge injection, 1/f, kT/C and shot-noise are not critical for the PAnIC architecture. It is not required that special considerations are made to minimize these noise. Making sure the power supply to each cell remains stable is considered important. Minimizing noise through the substrate is to be taken into consideration, but only to a certain point due to the asynchronous nature of the PAnIC architecture.

2.11 Bias currents

Three bias currents shall be provided for PAnIC, all at 100μ A. These bias currents supply the analog cells, internal buffers and output buffers separately.

2.12 Functional Description

The PAnIC should be able to connect the inputs and outputs of the analog cells to the aGlobIn0-3 and aGlobOut0 signals. It should also be capable of connecting some of the analog cells together to form larger circuits. The most significant of these circuits are an 8-bit successive approximation analog to digital converter; an explanation of this architecture is included in Appendix I, which is made from the sample & hold, comparator and a DAC. The analog cells with inputs shall be connected in the manner described in Figure 5. The boxes in front of each analog cell are switches that can connect the signals on the box input to the analog cell. All outputs from analog cells shall be possible to connect to the aglobout0-3 signals.

Figure 5 Possible input connections

2.13 Test description

Table 10 outlines the different tests that are to be performed on the produced PAnIC chip.

Table 10 Tests to be performed on PAnIC chip

Test	Туре	Description
power up	short test	slowly power up power pins and biases to check for shorts
Primary data interface	functional	writing and reading to PAnIC through SPI
Secondary data interface	functional	writing and reading to PAnIC through panic_io bus
TOC readout	functional	Reading TOC and verifying content
ReadBack	functional	Performing ReadBack to validate ReadBack function and to
	/short test	check connections between analog modules and connections
		to aGobIn0-3.
Output test	functional	Using DACs to check output swing and function
Analog cell test	functional	Check the function of each analog cell
ADC test	functional	Check the ADC without using the microcontroller as a SAR
		register (Appendix I)
ADC full test	functional	Check the operation of the ADC with SAR register
Speed up 1	speed test	Increase ADC speeds to check maximum speed of ADC and
		routing network.
Speed up 2	speed test	Use a DAC to check max write speed (digital functions) and
		output slewrate.
Frequency response	functional	Use the DiffBuff to test the frequency response of the routing
		network (aGlobIn -> DiffBuff -> aGlobOut)
Current up	stability	Use the DiffBuff in the same setup as frequency response test
		and check the stability of buffers by adjusting bias currents
Check permutations	functional	Check the function of all the different circuits that can be
		connected using PAnIC.

3. Verification Plan

This chapter details how we are going to verify that the PAnIC conforms to the specification.

3.1 Verification of digital functions

The digital cells, written in VHDL, shall be verified on a functional level. Functional test on data interfaces, TOC, ReadBack feature and routing control shall be performed. The synthesized standard cell netlist shall be verified using the same testbench as the VHDL model.

3.2 Verification of routing network

The routing network consists of the cells irs_cellv2, ORS_analog and outputbuff, these cells will be explained later. They shall be verified by performing simulations using SPICE. The best, typical and worst value for the parameters in the specification shall be extracted using the typical, worst speed and worst power model parameters of the process.

3.3 Mixed-Signal verification

The mixed-signal (analog cells and digital cells combined) cells shall be verified on a functional level using SPICE. Top-level verification of the operation of PAnIC shall be performed on extracted netlists, which includes pads, from both schematics and layout. The top-level tests that shall be performed are; functional verification of all analog cells, functional verification of the ADC, functional verification of the TOC, functional verification of ReadBack feature on analog modules with inputs and functional verification of data interfaces.

3.4 Timing Verification

Verification of the timing demands shall be performed on the comparator by checking the time from start of comparation to a valid output signal.

3.5 Layout verification

The PAnIC layout shall be verified against the schematic by performing a Layout VS Schematic (LVS) check. A Design Rule Check (DRC) shall be performed to verify that the layout conforms to the design rules of the specific process.

4. Design

In this chapter we will give an overview of the design methodology, explain the PAnIC architecture and how to use PAnIC.

4.1 Design methodology

The tools and how they are used will not be explained as a part of this thesis. A manual on the use of tools in mixed-signal designs [17] has been written as a direct consequence of this project.

Figure 6 shows the design flow. The project started with a SystemC model that was created as a pre-project to PAnIC. The SystemC model was the basis for the digital cells written in VHDL. The SystemC architecture was modified to create a VHDL code that could be synthesized. After confirming that the digital portions worked, the VHDL code was synthesized with Synopsys. A VHDL standard-cell netlist was extracted from the synthesized design and simulated in ModelSim to ensure that the synthesized design corresponded to the VHDL code.

The standard cell netlist was imported into Design Architect, as schematics, which were used as logic source for automatic place & route. The netlist were converted to schematics because the IC Station version we used could not place & route directly from a standard cell netlist. A second reason was that no mixed-signal simulators (co-simulation of VHDL and SPICE) were available.

The analog portions were designed using SPICE netlists and Eldo. The analog circuits were manually translated into Design Architect schematics. The digital and analog portions were combined using Design Architect. SPICE netlists were extracted from schematics and used to verify the design.

The layout was performed in IC Station. IC Stations place & route was used for the digital portions. Schematic Driven Layout (SDL) was used for analog portions. The layout was verified using Design Rule Check (DRC) and Layout Versus Schematic (LVS). The final design was submitted to the foundry as a GDS-II file.

Figure 6 Design Flow

4.2 PAnIC architecture

The PAnIC contains 6 analog cells; two digital to analog converters, one sample & hold, one comparator, one differential buffer and one bandgap voltage reference. Figure 7 shows a block diagram. The logic that enables programming of the PAnIC is divided into Panic_Control and analog module frameworks (AMF). The AMF is the core of routing capabilities in PAnIC. The AMF comes in two types; one for cells with analog inputs and one for cells without. These are called AMF_LMIR2OR2 (with inputs) and AMF_LMOR2 (without inputs).

At the input of the AMF_LMIR2OR2 we have an IRS. This module has 8 analog inputs and 1 analog output. The inputs are connected to switches that are controlled by an 8-bit register, the output from the switches are combined, thus the IRS can switch 8 input signals onto 1 output signal in any order. In the PAIC architecture each AMF had 5 IRS blocks, which meant up to 40 switch able inputs, but during the design of PAnIC the number was reduced to 2 IRS because no more was needed with the analog cells we were going to use. The global inputs aglobin0-3 are connected to the first four inputs of the IRS.

At the output of both AMF we have two ORS, these can connect the output signal from an analog cell to one of the four off-chip signals (aglobOut0-3). A digital input is provided in both AMF by a module register (ModReg).

As mentioned before, each analog module is addressed by an 8-bit word. Bits 0-2 we call "line address", bits 3-6 we call "module address" and bit 7 is unused. A 4 to 16 decoder in Panic_Control decodes the module address into enable signals for the analog modules. A 3 to 8 decoder in the AMF decode the line address into enable signals for IRS, ORS and ModReg.

Figure 7 PAnIC block diagram

4.3 Using PAnIC

This section gives an example of programming PAnIC to further explain the architecture of PAnIC.

The PAnIC is programmed through the SPI data interface and the cntr bus (Figure 7). Each programming step consists of a "data packet" and "control signal" pair, the data packet is 8-bit and the control signal is 3-bit. From here on they will be written as [data-packet/control-signal], for example [0000 0001/010]. The control signals are listed in Table 2 (section Control in Specification chapter). To program a connection within the PAnIC we need two pairs ([address/001] and [data/010]). The address is in two parts, one module address and one line address. The module addresses and line addresses are listed in Table 11 and Table 12 respectively, for example writing "0000 0001" to the ORS0 of DAC1 requires that we first write [00100 000/001] (the address) and then [0000 0001/010] (the data). An address pair will be written on the form [moduleaddress lineaddress/010] to make it easier to recognize. The 8-bit data performs a different function depending on which address it is written to. There can be three "endpoints" for each analog module, an IRS, an ORS or the ModReg. Table 13 lists all endpoints that perform a function when written to, for example writing [00100 010/001] (load address) then [0000 0000/010] (load data) sets DAC1 to its minimum value and writing [00100 010/001] then [1111 1111/010] sets DAC1 to its maximum. The ORS functions are common for all analog modules; these are listed in Table 14. The IRS has some common functions and some different, these are listed in Table 15.

We now have all that is needed to control the PAnIC. As an example we will connect the circuit shown in Figure 8, here DAC2 is connected to the SH, the SH is connected to the COMP, DAC1 is connected to the COMP and the COMP output we will connect to the global output. To do this we write:

[00000 011/001]	Address for IRS0 of SH	(Table 11 & Table 12)
[0010 0000/010]	Connect DAC2 to SH	(Table 15)
[00001 011/001]	Address for IRS0 of COMP	(Table 11 & Table 12)
[0001 0000/010]	Connect sh to COMP	(Table 15)
[00001 100/001]	Address for IRS1 of COMP	(Table 11 & Table 12)
[0010 0000/010]	Connect DAC1 to COMP	(Table 15)
[00001 000/001]	Address for ORS0 of COMP	(Table 11 & Table 12)
[0000 0001/010]	$Connect \ ORS0 \ output \ to \ {\tt aGlobOut0}$	(Table 14)
[00001 001/001]	Address for ORS1 of COMP	(Table 11 & Table 12)
[0000 0010/010]	Connect ORS1 output to aGlobOut1	(Table 14)

To check the connection we test if the comparator switches at the right value. We first write a digital word to DAC2, then we step DAC1 from below the digital word in DAC2 to above the digital word in DAC2.

[00101 010/001]	Address for ModReg of DAC2
[0000 1111/010]	Load the digital word
[00100 010/001]	Address for ModReg of DAC1
[0000 1110/010]	Load value below, aglobout0 is low (from comparator)
[0001 0000/010]	Load value above, aglobout1 is high (from comparator)

Figure 8 ADC block diagram

Table	11	Module	Address
10000		1110000000	1100000 0000

datapacket(7:3)	Module
00000	Sample & Hold
00001	Comparator
00010	Differential buffer
00011	Bandgap voltage reference
00100	DAC 1
00101	DAC 2

Table	12	Line	Addres	SS

datapacket(2:0)	Cell
000	ORS 0
001	ORS 1
010	IRS 0
011	IRS 1

Table 13 Module endpoints

Cell	Endpoints
Sample & Hold	IRS0, IRS1, ORS0, ORS1
Comparator	IRS0, IRS1, ORS0, ORS1
DiffBuff	IRS0, IRS1, ORS0, ORS1

Bandgap	ORS0, ORS1
DAC 1	ORS0, ModReg
DAC 2	ORS0, ModReg

Table 14 ORS routing functions

datapacket(2:0)	ORS input routed to
000	ORS output
001	ORS output & aGlobOut0
010	ORS output & aGlobOut1
011	ORS output & aGlobOut2
100	ORS output & aGlobOut3

Table 15 IRS routing functions

lineaddress	datapacket(8:0)	IRS output connected to
common:		
011	0000 0001	aGlobIn0
011	0000 0010	aGlobIn1
011	0000 0100	aGlobIn2
011	0000 1000	aGlobIn3
100	0000 0001	aGlobIn0
100	0000 0010	aGlobIn1
100	0000 0100	aGlobIn2
100	0000 1000	aGlobIn3
Sample & hold:	•	
011	0001 0000	DAC 1
011	0010 0000	DAC 2
011	0100 0000	DiffBuff positive output
011	1000 0000	BGR_Vref
100	0001 0000	DiffBuff negative output
Comparator:		
011	0001 0000	DAC 1
011	0010 0000	DAC 2
011	0100 0000	BGR_Vref
011	1000 0000	Sample & Hold negative output
100	0001 0000	Sample & hold positive output
100	0010 0000	DAC 1
100	0100 0000	DAC 2
100	1000 0000	BGR_Vptat
OTA:		
011	0001 0000	DAC 1
011	0010 0000	DAC 2
011	0100 0000	Diff buff positive output
100	0001 0000	DAC 1
100	0010 0000	DAC 2
100	0100 0000	Diff buff negative output

5. Implementation

The PAnIC chip contains several digital and analog cells. The digital cells were written in VHDL and the analog cells in SPICE.

The VHDL source code for PAnIC can be found on the CD-ROM. The source is divided into two parts, one that contains the code that was used to synthesize the digital portions of PAnIC and the other that was created to test the code.

The SPICE source code for each cell is included as part of the top-level netlist, the netlist can be found on the CD-ROM.

Listed in Table 16 are the cells used in PAnIC. All schematics, except for the analog cells, are included in the Appendix III and are shown in the same order as in Table 16. Each cell in this chapter has a reference to the figure where its schematic can be found. The cells in PAnIC will be explained in following order; Top level, PAnIC Control, AMF and support circuitry.

Cell name	Parent cell	Description
maspan		panic_top cell with pads
IOA5P	maspan	Analog io pad without series resistance
IOA2P	maspan	Analog io pad with series resistance
OB33	maspan	Digital output pad
IB15	maspan	Digital input pad
IOF3	maspan	Digital io pad
PP01	maspan	Power pad (ground)
PP02	maspan	Power pad (VDD)
panic_top	maspan	panic cell with output buffers
panic_io_buff	panic_top	panic_io(7:0) to panic_in(7:0) and
		panic_out(7:0) converter
outputbuff	panic_top	Analog buffer for driving pads
cb_100u	panic_top	Current copier, $1x100\mu A > 6x100\mu A$
panic	panic_top	panic cell
panic_io_tribuff	panic_io_buff	1 bit io to input and output
panic_control	panic	panic control
AMF_LMIR2OR2	panic	AMF with input

Table 16 Cells in PAnIC

AMF_LMOR2	panic	AMF without input
sample & hold	panic	Sample & hold
comparator	panic	Comparator
DAC8	panic	8-bit DAC
BGR_final	panic	Bandgap Voltage Reference
DiffBuff	panic	Differential buffer
curr_combine	panic	Current divider $1x10\mu A > 2x5\mu A$
curr_combine_cells	panic	Current divider $1x100\mu A > 4x5\mu A$
curr_combine10u	panic	Current divider $1x100\mu A > 6x10\mu A$
addreg	panic_control	Address register
toc	panic_control	Table of content
iofallback	panic_control	Backup input/output
decode4_16	panic_control	4 to 16 decoder
spi	panic_control	Serial Peripheral Interface
control	panic_control	Control signal decoder
AMF_Digital_LMIR2OR2	AMF_	Digital portion of AMF with input
	LMIR2OR2	
ORS_analog	both AMF	Analog portion of ORS
IRS_analogv2	AMF_	Analog portion of IRS
	LMIR2OR2	
AMF_Digital_LMOR2	AMF_LMOR2	Digital portion of AMF with output
LineDec	both	3 to 8 decoder
	AMF_Digital	
IRS_Digital	AMF_Digital_	Digital portion of IRS
	LMIR2OR2	
ORS_Digital	both	Digital portion of ORS
	AMF_Digital	
ModReg	both	8-bit Register
	AMF_Digital	
irs_cellv2	IRS_analogv2	Switch and readback in IRS
buff_ors	ORS_analog	Buffer used to drive the routing network
5.1 Top Level

Top level is the three cells maspan, panic_top and panic. These will be explained in reverse order. The reason for dividing the top level into these three cells, as opposed to including everything into the panic schematic, is convenience. Using this hierarchy the layout becomes more manageable.

panic (Schematic 6 - Schematic 10)

The cell panic is the "logical" top level of PAnIC. It contains everything that makes PAnIC work (except output buffers).

panic_top (Schematic 2)

The cell panic_top is panic plus output buffers. The outputbuff cells are there to drive the analog io pads. The panic_io_buff is there to convert the panic_io (input/output) into panic_in (input) and panic_out (output). This operation is performed since the digital IO pads (IOF3) take 1 input and 1 output signal, not an input/output signal. The cb_100u cell provides bias currents for the outputbuff cells.

maspan (Schematic 1)

The cell maspan (master panic) is panic_top plus pads as shown in the schematic. Further description of the pads can be found at AMS homepage [18].

5.2 Panic_Control

Panic_Control (Schematic 12) consists of address register, table of content, input/output fallback, 4 to 16 decoder, serial peripheral interface and control. These modules will be explained separately.

Address register (Schematic 18)

The address register holds the module and line address. It is an 8-bit synchronous register with clk connected to the clock input. The three least significant bits are connected to the lineAddr and bits 3 to 6 connected to modAddr (bit 7 is not used). A positive transition on clk will load the register with the value on dBusIn. Setting reset signal high will reset the register to 0x00.

Table of Content (Schematic 19)

The TOC was written in VHDL as a read only memory (ROM) with a 16 x (2 x 8) structure, in other words the modAddr selects a (2 x 8) ROM and lineAddr selects the byte to be read. This way there is no need for an internal address register in the ROM,

it can use the existing address register. The TOC stores the cell number at line address 0 and the sub number at line address 1. During synthesis it was left to Synopsys to synthesize the most efficient structure. A positive transition on tocwritetobus will write the current value to dBusOut.

Table 17 shows the content of the TOC at the different addresses. The sub numbers may seem meaningless, but they are not. As mentioned before the first number (line address "000") defines the class of circuit, and the sub number defines a specification. Since this is the first IC based on the PAnIC architecture the sub numbers equal "0000 0001". If for example the two 8-bit DACs were different i.e. based on different topologies, the sub numbers for the DACs would be different.

address	content	description
00001 000	0000 0001	sample and hold
00001 001	0000 0001	sub nr
00010 000	0000 0010	Comparator
00010 001	0000 0001	sub nr
00011 000	0000 0011	Bandgap voltage reference
00011 001	0000 0001	sub nr
00100 000	0000 0100	8-bit DAC
00100 001	0000 0001	sub nr
00101 000	0000 0100	8-bit DAC
00101 001	0000 0001	sub nr

Table 17 TOC content

IoFallBack (Schematic 20)

This is the secondary input/output interface, it consists of an 8-bit multiplexer and tristate buffers. Table 18 describes the IOFallBack states.

i dole 10 101 dilback states

cntr_io	Disable_SPI	panic_io	to_modules
00	0	from_irs	high impedance
01	0	from_toc	high impedance
1X	1	input	panic_io

Decode4_16 (Schematic 21)

Decode4_16 is a 4 to 16 decoder with enable. It translates the module address into enable signals for the analog module.

Serial Peripheral Interface (Schematic 22)

The SPI is the primary data communication interface of the PAnIC. The behavior of the SPI was written in VHDL, it was left to the Synopsys to synthesize the most efficient structure. Figure 9 shows the timing diagram for one data transmission. The signals ss, sck and mosi (master out, slave in) are from the microcontroller. The micro-controller tells PAnIC that a data transmission is about to start by setting ss low. The value the micro-controller wants to transmit is "11110000", the current value of the SPI is "00001111". When sck goes high the SPI sets miso (master in, slave out) to the MSB and loads LSB with the value of mosi. After the transmission the value on dBusOut will be "11110000" while the value transmitted to the micro-controller will be "00001111". Table 19 lists the SPI states.

readTOC	readIRS	enable	Disable_SPI	dBusOut	SPI value
Х	Х	Х	1	high impedance	no change
Х	Х	0	0	high impedance	no change
Х	Х	1	0	SPI value	no change
1	0	1	0	SPI value	dBusTOCIn
0	1	1	0	SPI value	dBusIn

Figure 9 Timing diagram for the SPI module

Control (Schematic 23)

control decodes the cntr into control signals for different portions of PAnIC. Table 20 lists the different states depending on enable and cntr.

enable	cntr	addreadfrombus	modreadfrombus	modwritetobus	tocwritetobus
0	Х	0	0	0	0
1	000	0	0	0	0
1	001	1	0	0	0
1	010	0	1	0	0
1	011	0	0	1	0
1	100	0	0	0	1
1	101	0	0	0	0
1	110	0	0	0	0
1	111	0	0	0	0

Table 20 Control states

5.3 Analog Module Framework

The AMF comes in two flavors; AMF_LMIR2OR2 (Schematic 13) and AMF_LMOR2 (Schematic 14). Only the contents of AMF_LMIR2OR2 will be explained since AMF_LMOR2 is an AMF_LMIR2OR2 without the input registers. The AMF_LMIR2OR2 contains an AMF_Digital_LMIR2OR2, two IRS_analog and two ORS_analog blocks.

AMF_Digital_LMIR2OR2 (Schematic 24)

 $The \texttt{AMF_Digital_LMIR2OR2} \ consist \ of \texttt{LineDec}, \texttt{ModReg}, \texttt{IRS_Digital} \ and \texttt{ORS_Digital},$

LineDec (Schematic 28)

LineDec is a 3 to 8 decoder. It provides enable signals for the ModReg, IRS_Digital and ORS_Digital cells.

ModReg (Schematic 31)

ModReg is an 8-bit synchronous register that provides a digital input for the analog cell. It loads the value on dBusIn if enable is high and a positive transition occurs on modreadfrombus. It was originally intended to provide a digital output as well, but because of an error in the VHDL code, which was discovered late in the design process, it can only write the current value of the register to dBusOut. Since none of the analog cells use a digital output this error was not corrected.

IRS_Digital (Schematic 29)

IRS_Digital is the digital portion of the IRS, it provides control signals (acontrol) for analog switches in IRS_analogv2. It loads the value on dBusIn if enable is high, reset is low and a positive transition on modreadfrombus occurs. The port irsloadanalog is connected to the modwritetobus signal from Control. When irsloadanalog is high the value of acontrol is written to dBusOut. The register is reset to 0x00 when the reset signal is high. Table 21 describes the IRS_Digital states. The irsloadanalog signal is connected to the modwritetobus signal from Control in Panic_Control.

enable	modreadfrombus	irsloadanalog	dBusOut	register value		
0	Х	Х	high impedance	no change		
1	1	0	high impedance	dBusIn		
1	0	1	acontrol	no change		

Table 21 IRS_Digital states

ORS_Digital (Schematic 30)

ORS_Digital is the digital portion of ORS, it provides control signals (ors_control(6:0)) to ORS_analog. It loads the value on dBusIn if enable is high and a positive transition occurs on modreadfrombus. The register is reset to "000" if reset is high. It provides control signals for ORS_analog switches. Table 22 describes the ORS_digital states.

register value	ors_control	state
000	000 0001	normal
001	000 0011	aGlobOut0
010	000 0101	aGlobOut1
011	000 1001	aGlobOut2
100	001 0001	aGlobOut3
101	010 0000	Low
110	100 0000	High
111	000 0001	normal

Table 22 ORS Digital states

IRS analogv2 (Schematic 26)

IRS_analogv2 is the analog portion of the IRS and contains eight irs_cellsv2. Table 23 describes the IRS_analogv2 states.

The irs_cellv2 is shown in Schematic 32. Transistors m_1, m_2 and m_3, m_4 are inverters that invert the wtb signal (modwritetobus from control) into wtb_inv and a delayed wtb. The transistor m_5 is the analog switch; we have not used a transmissiongate here because the signal swing of the input signal is 0-3V while the supply voltage of the irs_cell is 5V. The transistors m_7, m_8 and m_9, m_10 are transmissiongates. When wtb is low m_9, m_10 is on and acontrol is connected to the

gate of m_5. When wtb is high m_7, m_8 is on and in is connected to acontrol. The transistor m_11 is a pull-down transistor for the gate of m_5 so leakage current trough m_4 or m_9, m_10 does not turn m_5 on during readback. The control signal for m_11 (wtb2) is delayed so switching currents through m_11 is minimized when switching loadirsanalog from low to high. loadirsanalog is connected to the modwritetobus signal from control in Panic_Control

Table 23 IRS analogv2 states

loadirsanalog	acontrol
0	input from IRS_Digital
1	in(7:0)

ORS_analog (Schematic 25)

ORS_analog is the analog portion of the ORS. It has 7 different states depending on the value of the ors_control(6:0) bus from ORS_Digital. Table 24 shows the outputs of ORS_analog in the different states. From the schematic we se that ors_control(4:0) control switches while ors_control(5) and ors_control(6) control pull-down and pull-up transistors. The pull-up and pull-down are used during ReadBack to provide high and low states. The cell called buff_ors is a buffer for driving the routing network.

Since aGlobOut0-3 are signals with several ORS_analog blocks connected to them, there is a possibility that two (or more) signals might be shorted. The layout of the ORS_analog cell and the aGlobOut0-3 nets allow such a mistake up to a certain point. It can tolerate up to five ORS_analog blocks driving a aGlobOut signal high while one ORS_analog block driving the signal low, in other words, the buffer and surrounding nets can tolerate five times the nominal DC current and still operate within limits.

Ors_control	State	aGO0	aGO1	aGO2	aGO3	Output
000 0001	Normal					In
000 0011	Glob0	In				In
000 0101	Glob1		In			In
000 1001	Glob2			In		In
001 0001	Glob3				In	In
010 0000	Low					Low
100 0000	High					High
000 0001	Normal					In

Table 24 ORS analog states

buff_ors (Schematic 33)

This is a buffer based on a two-stage operational amplifier with miller compensation.

5.4 Support circuitry

Supporting the main cells there are some cells that will be described here.

outputbuff (Schematic 4)

This is a buffer based on a two-stage operational amplifier with miller compensation. It is used to drive the aglobout0-3 pins.

cb_100u (Schematic 5)

This is a current copier for supplying 100µA bias currents to the output buffers.

panic_io_buff (Schematic 3)

Since the digital io pads requires one input and one output signal this cell was created to separate the panic_io(7:0) bus into panic_in(7:0) and panic_out(7:0). It consists of 8 panic_io_tribuff cells (Schematic 11).

curr_combine (Schematic 15)

This cell divides one $10\mu A$ current into two $5\mu A$ currents, used to bias the buffers in ORS_analog cells.

curr_combine_cells (Schematic 16)

This cell divides one 100μ A current into 45μ A currents, used to bias the sample & hold, differential buffer, bandgap voltage reference and comparator.

curr_combine10u (Schematic 17)

This cell divides one $100\mu A$ current into six $10\mu A$ currents. It is used to bias the curr_combine cells.

6. PAnIC layout

Figure 12, on page 38, shows the finished layout of PAnIC, PAnIC is 3.8 mm wide and 2.9 mm high. The final layout is included on the CD-ROM as a GDS-II file.

As always, there are many considerations when performing layout of a mixedsignal design, i.e. power stability, substrate noise, crosstalk and matching of devices. Special care has been given to two of these; power stability and substrate noise, as specified. Another important consideration was to provide enough current to the cells. The calculations and dimensioning of the power nets will be explained first, secondly how to make stable power and thirdly an explanation of guard-rings.

6.1 Dimensioning power

Simulations in the synthesis tool and manual calculations have been performed to make sure that the power lines driving the different cells can handle the current that the cell needs. In the process the dc current pr μ m metal was 1mA and a via could handle 0.5mA. We started by calculating the power used in the digital portions of PAnIC when operating at a frequency of 10MHz, which is 10 times the intended operating frequency. The calculations are shown in Table 25, Table 26 and Table 27. Table 28 shows the total current estimation for all cells in PAnIC. Table 29 shows the power nets and the final dimension for each net

The digital cells are all made from standard cells in the digital standard cell library of the foundry.

Std. cells	μW/MHz	MHz LineDec		Mo	ModReg		ORS_Digital		IRS_Digital	
		Nr	µW/MHz	Nr	µW/MHz	Nr	µW/MHx	Nr	$\mu W/MHz$	
AN21	4,9	0	0		0		0	1	4,9	
NA3	4,27	0	0		0		0	1	4,27	
NO2	4,15	0	0		0	5	20,75		0	
AND4	6,13	0	0		0	1	6,13		0	
OR2	4,85	0	0		0	1	4,85	1	4,85	

Table 25 Power used in AMF cells

PAnIC layout

EN1	4,79	0	0		0	1	4,79		0
DFA	9,7	0	0	8	77,6	3	29,1	8	77,6
IT2	4,52	0	0	8	36,16		0	16	72,32
AND2	5,12	0	0	1	5,12	1	5,12	1	5,12
NO3	4,51	8	36,08		0		0		0
NA2	3,62	2	7,24	1	3,62	3	10,86	8	28,96
IN1	3,11	3	9,33	1	3,11	1	3,11	10	31,1
		13	52,65	19	125,6	16	84,71	46	229,1

Table 26 Power and current used in AMF

Cell	µW/MHz	AMF	_Digital_LMOR2	AMF	Digital_LMIR2OR2
		Nr	µW/MHz	Nr	µW/MHz
LineDec	52,65	1	52,65	1	52,65
ModReg	125,61	1	125,6	1	125,6
Ors_Digital	84,71	2	169,4	2	169,4
IRS_digital	229,12		0	2	458,2
		4	347,7	6	805,9
Frequency	Supply		Current (mA)		Current(mA)
10MHz	5V		0,69536		1,61184

Table 27 Power and current used in Panic_Control and sub-cells

Std. C.	µW/MHz	Ad	ldrReg	Co	ontrol	Dec	ode4_16	ТО	С	SPI		IoF	allBack
AN21	4,9	0	0		0		0		0	8	39,2		0
NA3	4,27	0	0		0	2	8,54		0		0		0
NO2	4,15	0	0	1	4,15	17	70,55		0	2	8,3		0
AND4	6,13	0	0		0		0		0		0		0
OR2	4,85	0	0		0		0		0	1	4,85		0
OR3				1				1			0		0
EN1	4,79	0	0		0		0		0		0		0
DFA	9,7	7	67,9		0		0		0		0		0
IT2	4,52	0	0		0		0		0	8	36,16	17	76,84
AND2	5,12	0	0		0		0		0	1	5,12		0
NO3	4,51	0	0		0		0	1	4,51		0		0
NA2	3,62	0	0		0	6	21,72	2	7,24	18	65,16		0
IN1	3,11	1	3,11	3	9,33	4	12,44	3	9,33	26	80,86	18	55,98
NO4	6,91		0	1	6,91		0	1	6,91		0		0
AND43	13,54		0	1	13,54		0		0		0		0
NO23	12,68		0	1	12,68		0		0		0		0
MU2	5,45		0		0		0	2	10,9	25	136,25	8	43,6
DF8	8,94		0		0		0	7	62,58		0		0
DFS8	9,96		0		0		0	1	9,96		0		0
LOGIC0			0		0		0	1	0		0		0
EN1	4,8		0		0		0	1	4,8		0		0
NA22	6,77		0		0		0		0	1	6,77		0
ON221	6,76		0		0		0		0	8	54,08		0
ON211	3,96		0		0		0		0	8	31,68		0

DFB	5,2		0		0		0		0	17	88,4		0
OR23	12,16		0		0		0		0	1	12,16		0
		8	71,01	8	46,61	29	113,25	20	116,23	124	568,99	43	176,42
PAnIC_Control 1092,51 µW/MHz		VD	D: 5V	Fre	q: 10MH	Z	Curren	t: 2,1	8 mA				

Table 28 Current estimation for cells

Cell	Estimated	Sized	Supply	Ground	Nr	Total
	Current	for	Net	Net	of	Current
					cells	(mA)
AMF_Digital_LMOR2	<1mA (10MHz)	2mA	VDD	VSS	3	6
AMF_Digital_LMIR2OR2	<2mA (10MHz)	2mA	VDD	VSS	3	6
IRS_analogv2	<1uA	1mA	VDDA	VSSA	6	6
ORS_analog	0,4mA	2mA	VDDA	VSSA	12	24
SH_GR03	2.5mA	3mA	VDDA3V	VSSA	1	3
OTA_GRP10	<1mA	1mA	VDDA3V	VSSA	1	1
DAC	<2mA	4mA	VDDA	VSSA	2	8
BGR	< 0,1mA	1mA	VDDA3V	VSSA	1	1
Comparator	< 2uA	2mA	VDDA3V	VSSA	1	2
Panic_Control	<3mA (10MHz)	4mA	VDD	VSS	1	4

Table 29 Size power nets

Power net	Estimated current (mA)	Size(µm)
VDD	16	20
VDDA5V	38	40
VDDA3V	7	10
VSS	16	20
VSSA	46	50

6.2 Making stable power

All metal lines on an integrated circuit have a certain sheet resistance per square. If you do not take this into consideration when you route your power nets you will run into trouble when using the chip. Figure 10 shows an example of bad power routing, the block diagram on the left translates into the circuit diagram on the right. If the current drain from the cells is stable, the voltages V1, V2 and V3 will be stable but V3 < V2 < V1 < VDD because of the series resistance. We cannot get away from this series resistance between a pin and the cell, there will always be a difference between VDD and the supply voltage of the cell. We can minimize this resistance in two ways; shorter power nets or wider power nets.

The big problem starts when current drain from a cell varies, which it normally does. The voltages V1, V2 and V3 will change proportional to the change in the voltage drop over the series resistance. Table 30 describes calculations of voltage drops over resistances in Figure 10. Here the sheet resistance is 150 m Ω per square, the widths of the lines are 10 μ m and VDD is 5V. In the first case V1=4.835V,

V2=4,715V and V2=4,715V. In the second case the DAC is switching and draws a 10mA current instead of the nominal 1mA current. In this case V1=4,565V, V2=4,243V and V3=3,838V. As we can see, the change in current in the DAC has large effects on the supply voltages; $\Delta V1 = 0,27V$, $\Delta V2 = 0,472V$ and $\Delta V3 = 0.877V$. A supply voltage change of almost 1V can have devastating effects on the performance of a cell. A similar resistor network will exist between VSS and ground of a cell, thus further decreasing the effective potential the cell has available.

To minimize voltage drop and voltage changes several strategies have been employed. The power nets are divided into analog and digital supply nets, these supply nets are connected to the VDD and VSS pads using wide metal lines to lower the sheet resistance. The power nets are VDD, VDDA VDDA3V, VSS and VSSA. These nets are routed, as we can see in Figure 12, in a large ring around PAnIC. It is connected to pads at three places, top, left and right. All cells in PAnIC draw power from the ring, thus minimizing voltage drop due to current changes in neighboring cells. All power lines to cells are routed in metal 3 since it has the lowest sheet resistance (half of metal 2). Cells with large current changes (such as the DAC and sample & hold) have been placed close to a pin.

Figure 10 Example power routing

	Length	Resistance	Curr. Name	Current (mA)	Voltage Drop	Current (mA)	Voltage Drop
R1	2000	30	I1+I2+I3	5	0,15	14	0,42
R2	1500	22,5	I2+I3	4	0,09	13	0,2925
R3	2000	30	13	1	0,03	10	0,3
R4	1000	15	I1	1	0,015	1	0,015
R5	1000	15	I2	3	0,045	3	0,045
R6	1000	15	13	1	0,015	10	0,15

Table 30 Power calculations on Figure 10

6.3 Guard-rings

Enclosing all analog cells in PAnIC we have a guard-ring that separates the digital substrate from analog substrate (Figure 12). A cross-section of the guard ring is shown in Figure 11. This guard ring decouples the digital (left side) and the analog (right side) via the capacitor between the N well and the P substrate. This prevents substrate noise propagation between digital and analog substrate.

Figure 11 Guard-ring cross-section

PAnIC layout

Figure 12 PAnIC layout with pads

7. Verification

7.1 Verification of digital functions

The verification of the digital functions was performed in ModelSim. The tests that were performed were test of the SPI interface test of reset, test of readback function, test of TOC, test of routing and test of the IoFallBack interface. The results from these test are not included in this report since the mixed-signal verification covers the same tests. The VHDL testbench can be found on the CD-ROM.

7.2 Verification of routing network

As mentioned earlier, the routing network consists of irs_cellv2, ORS_analog and outputbuff. Each of these cells were verified according to specification. The verification was performed using SPICE. The cells were simulated with typical, worst speed and worst power model parameters. All cells were found to operate within specified limits. Presented here are the results from the simulation.

irs_cellv2

The irs_cellv2 was simulated with a load of 3pF and a supply of 5V. The results from the simulations are shown in the table below.

Name	Best	Typical	Worst	[]
Signal swing	0 - 4.1	0 - 3.8	0-3.6	V
Bandwidth	100	65	40	MHz
Off dampning	< 90	< 80	< 75	dB
Phase shift up to 1MHz	0.15	0.23	0.35	deg
Phase shift at 30MHz	4.5	6.8	10.3	deg

Table 31 irs_cellv2 results

ORS_analog

The ORS_analog was simulated with a bias current of $5\mu A$, 5V supply and 5pF load. The result from the simulation is shown in the table below.

Table 32 ORS_analog results

Name	Best	Typical	Worst	[]
Signal swing	0 - 4.1	0-3.8	0-3.6	V
Bandwidth	40	36	33	MHz
Off dampning	56	52	50	dB
Phase shift up to 1MHz	1.9	2.2	2.8	deg
Phase shift at 30MHz	70	82	95	deg
Slewrate	10	9.3	8.4	V/µs

Outputbuff

The outputbuff was simulated with bias current of $100\mu A$, supply of 5V and a 50pF load. The results from the simulations are shown in the table below.

Table 33 outputbuff results

Name	Best	Typical	Worst	[]
Signal swing		0-4.2		V
Bandwidth	90	85	80	MHz
Phase shift up to 1MHz	0.9	1.2	1.5	deg
Phase shift at 30MHz	30	35	37	deg
Slewrate	54	50	46	V/µs

7.3 Mixed-Signal Verification

Each mixed-signal cell has undergone a functional test using extracted netlist from the schematic. Due to problems with the design software we were never able to extract a netlist from the finished layout. Although this is a disadvantage we are confident that the simulations on netlist from schematics in combination with LVS is sufficient to verify the operation of PAnIC. More on this point will be discussed in the next chapter. The results presented here are simulations on the top-level netlist including pads (extracted from Schematic 1). The results from the lower levels in the hierarchy are not presented since they are implicit in the following results. The verification of the timing demands is included as part of the comparator simulation.

Analog Cells

DAC

Figure 13 shows the simulation of DAC1, the simulation of DAC2 has not been included since it is similar to the DAC1 simulation. The output of DAC1 is connected to aglobout0, this occurs at 3.5µs. The values "0000 0000", "0000 0111", "0000 1111", "0001 1111", "1111 1111" are then written to the DAC1. As we see the DAC responds and works as it should.

Figure 13 DAC1 functional verification

Bandgap Voltage Reference

Figure 14 shows the verification of the Bandgap Voltage Reference. v_{ref} is connected to aglobout0 and v_{PTAT} is connected to aglobout1. At 3.0µs the aglobout0 = 1.2V and aglobout1 = 0.6V.

Figure 14 Bandgap voltage reference functional verification

Sample & Hold

Figure 15 shows the result from the sample & hold simulation. aGlobIn0 is connected to positive input and aGlobIn1 is connected to negative input. aGlobIn0 is ramped from 0V to 3V, aGlobIn1 is ramped from 3V to 0V. aGlobOut0 is connected to the positive output and aGlobOut1 is connected to the negative output. The circuit samples when sh_inv_clk is high and holds when sh_inv_clk is low. As we can see from the result the sample & hold has an output swing of 1.3 - 3V.

Comparator

Figure 16 shows the result from the comparator verification. aGlobIn0 is connected to the positive input and aGlobIn1 is connected to the negative input. aGlobIn0 and aGlobIn1 are switched between 1.5V and 1.508V. aGlobOut0 is connected to the positive output and aGlobOut1 is connected to the negative output. When comp_clk goes high the comparator samples the input signals. From comp_clk goes high till the output signal is valid there is a delay of 0.5µs. This translates to a clock frequency of 1MHz, as specified. The main limiter on the timing demand is the slew-rate of the internal buffers (buff_ors) cells.

Figure 16 Comparator functional verification

Differential Buffer

Figure 17 shows the result from the differential buffer verification. vin_p is connected to aglobIn0 and vin_n is connected to aglobIn1. $vout_p$ is connected to aglobOut2. The output signal is valid from 14µs, the output signal has a peek to peek value of 0.4V.

Figure 17 Differential buffer functional verification

Analog to Digital converter verification

The ADC is connected as shown in Figure 8 (under Using PAnIC in the Design chapter). Figure 18 shows an excerpt from the ADC8 simulation. DAC2 is set too "0000 1111", DAC1 is switched between the values "0000 1110" (x0E) and "0001 0000" (x10). The positive output from the comparator is connected too aglobout0, and the negative is connected to aglobout1. The SH holds when sh_inv_clk is low. The comparator samples when comp_clk goes high. The first value is written to DAC1 at 38.5 μ s (cntr = x2 = "010"), the SH starts holding at 40.3 μ s, the comparator starts comparing at 40.8 μ s. As we can see, the comparator output indicates that DAC2 output signal is larger than the DAC1 output signal, which is what we would expect. The same sequence repeats for the second value, and the comparator indicates that the current DAC1 output signal is larger than the DAC2 output signal.

Figure 18 ADC8 functional verification

TOC verification

Figure 19 shows an excerpt from TOC simulation. The panic_io bus from PAnIC is split into a panic_in and panic_out to make it possible to simulate in SPICE, this conversion is done outside the maspan cell. At 0.8µs the panic_in is set to "00011 000" (x18) at 8.5µs this is loaded into the address register (cntr= x1 = 001). At 9.5µs the tocwritetobus signal is given (cntr = x4 = 100). The output changes to "0000 0100" (x4). If we compare this to the TOC content (Table 17) we see that the result is correct. The same sequence repeats for the addresses "000100 000" and "00101 000".

Figure 19 Excerpt from TOC functional verification

ReadBack verification

The ReadBack verification was divided into three simulations, ReadBack for COMP, ReadBack for DiffBuff and ReadBack for SH. The reason for separating was that Eldo crashed when trying to run a complete ReadBack simulation. The signals for ReadBack were generated with a Perl script (included on the CDROM). It follows the pseudo code presented in the introduction (section 1.8). It starts by setting all ORS low, and then performs the ReadBack loop. The complete result from the ReadBack simulation is extensive and will not be presented here. An excerpt from the comparator simulation is shown in Figure 20. At 90.5 μ s it loads the address for DAC1, at 91.5 μ s it sets ORS0 of DAC1 to high, at 92.5 μ s it loads the address for IRS0 of the comparator and at 93.5 μ s it performs a ReadBack (cntr = 011). The panic_out value at this point changes to "0001 0000". If we compare this value to line 16 in Table 15, we see that it is indeed the DAC1 that should be connected to input 5 on IRS0 of the comparator.

12-Nov-2002 15:19:36	Picked Value	= 9.39e-05	s					x1	= 9.39e-05 s
BUS(CNTR) = b011	Ь000	b001	Ь000	ь010	b000		b001	Ь000	b011
$BUS(PANIC_IN) = b00000000$	b001	0000	Ь0000	0110	h	0000	01011	ь000	00000
$BUS(PANIC_OUT) = b00010000$	b001	00000	Ь0000	0110	h	0000)1011	Ь0000000	b00010000
BUS(MODADDR) = b0001	b0011		Ь01	00				b0001	
BUS(LINEADDR) = b011	b001	ьооо					b011		
Nierarchy: 0 Level :	 9.00 9.	05 9.:	 10 9.:	1111 15 9.	 20	9.	25	9.30 9.3	 5e-5 s

Figure 20 Excerpt from readback of comparator functional verification

Data Interfaces

The IoFallBack data interface has been implicitly tested through the TOC and ReadBack verification. An excerpt from the SPI simulation is shown in Figure 21. The BUS(SPI) is the ss (LSB), sck, mosi (MSB) signals. The simulation shows a similar sequence as Figure 9 Timing diagram for the SPI module. dBusOut is read directly from the output of the SPI cell.

Figure 21 Excerpt from SPI functional verification

7.4 Layout verification

Design Rule Check (DRC)

The design rule check has been performed. There are still some errors in the design, but most of these are IC station inability to recognize the power nets. The rest are DRC errors in the pads. The pads are made by the foundry and are therefore considered their responsibility. We remain confident that no critical DRC errors are present in the finished layout.

Layout VS Schematic (LVS)

Layout VS Schematic has been performed on all cells in PAnIC. The top-level LVS can be found in Appendix IV. The LVS contains no errors, but two warnings. The warnings are:

- Unbalanced smashed mosfets were matched.
- Ambiguity points were found and resolved arbitrarily.

The unbalanced smashed mosfets are in the Differential Buffer and are considered to be correct. The ambiguity points are the two unconnected bias currents on cb_100u cell and are of no consequence.

8. Discussion & future work

Many issues have already been discussed in previous chapters, this chapter discusses some deviations from specification and verification plan and describes future work.

Creating PAnIC has been a more challenging project than we at first expected, and at times it has deserved its name. Due to problems with software tools the PAnIC tape-out has been postponed two times, but we finally have a product that we are confidant will work.

8.1 Area

A point where the specification has not been met is the chip area. We originally expected that we could create PAnIC on an area less than 10 square mm, the minimal area of the MPW run, but this turned out to be quite difficult. The total chip area is actually 4.0x3.8mm, were 11 square mm are the PAnIC, since 3 more independent circuits were included in the run.

8.2 Netlist extraction from layout

As common practice in ASIC design we indented to run the final verification of the PAnIC on an extracted netlist from layout. Unfortunately we were not able to do this due to problems with the design software. The first problem was that IC station did not extract devices with the correct model. The transistor models were easy to fix, but the extracted capacitor and resistor models were not. A second problem was that hierarchical extraction, which would have made changing the capacitor and resistor modules easier, extracted some of the digital cells twice and thereby produced a netlist that was incorrect. A third problem was that manually changing the capacitor and resistor models in a flat netlist could introduce errors. We decided that verification of schematic and verification of layout with LVS was sufficient to ensure the operation of PAnIC since all cells have been designed to cope with parasitic capacitances.

8.3 Near Future

The PAnIC chip is expected back from the foundry March of 2003. The creation of a test PCB is planned for the months January and February. If all goes well, a prototype remote laboratory using PAnIC should be finished at the end of summer 2003.

8.4 Next generation of PAnIC

Some observations have been made concerning future generations of the PAnIC chip. As it stands today, the PAnIC architecture is to complex to use an "IP" module for providing programmability to analog cells. Imagine that you have 16 analog cells which you want to be able to select through the same interface, and which you would like to be able to connect together. An IP version of PAnIC could do this with a small addition to the layout time. There are a couple things that need to be looked at to make this possible. First, the frameworks take up rather large area; the size of an AMF_LMIR2OR2 makes the IRS ability to switch 8 inputs in any order an improbable feature to use. Using three AMFs to connect the circuit in Figure 1 (page 2) is, although possible, not that attractive since the connected circuit would probably be under 1% of the used area. A more attractive scenario is the way the AMFs has been used in PAnIC, connecting larger modules together. The IRS could therefore, in future versions; reduce the switching capability by only allowing 1 connection at a time, thus saving area. Another area saver would be to custom design the IRS_Digital and ORS_Digital cells on a transistor level and put more of the logic in Panic_Control. The goal should be to minimize area and simplifying addition of programmability during layout. It would also be advantageous to allow each analog cell to have a different set of IRS, ORS and ModReg modules.

The design of the TOC should be revisited in future versions. As it is today, changing the content of the TOC involves rewriting the VHDL code. A possible solution would be to separate the TOC from Panic_Control.

Early in the design phase (late summer of 2001) we considered using an onchip microcontroller, but decided against due to complexity. This decision should be revisited in future versions.

9. Conclusion

The specification, design, implementation and verification of a programmable analog integrated circuit (PAnIC) with table of content has been presented. The architecture of PAnIC has been explained and proven through simulations to be a self-consistent programmable analog integrated circuit. The PAnIC offers extended flexibility, through circuit programmability, to our remote laboratory concept [1].

10. References

- [1] Wulff, C. Ytterdal, T. Sæthre, T.A. Skjevlan, A. Fjeldy, T.A. et al "Next Generation Lab – A solution for remote characterization of analog integrated circuits". *International Caracas Conference on Devices, Circuits* and Systems (ICCDCS-2002). Found in Appendix VI and on the CDROM
- [2] SystemC, <u>http://www.systemc.org</u>
- [3] Wulff, C. Project report in SIE4094 "Programmable Analog Integrated Circuit w/table of content", Fall 2001 Department of Physical Electronics, Norwegian University of Science and Technology. Found on the CDROM
- [4] Shen, H. Xu, Z. Dalager, B. Kristiansen, V. Strøm, Ø. et al "Conducting Laboratory Experiments over the Internet", *IEEE Trans. on Education*, 42, No. 3, 1999, pp. 180-18.
- [5] Fjeldly, T.A. Shur, M.S. Shen, H. Ytterdal, T., "Automated Internet Measurement Laboratory (AIM-Lab) for Engineering Education", *Proceedings* of 1999 Frontiers in Education Conference (FIE'99), San Juan, Puerto Rico, IEEE Catalog No. 99CH37011(C), 1999, 12a2.
- [6] Shur, M.S. Fjeldly, T. A. Shen, H., "AIM-Lab A System for Conducting Semiconductor Device Characterization via the Internet", late news paper at 1999 International Conference on Microelectronic Test Structures (ICMTS 1999), Gothenburg, Sweden.
- [7] Fjeldly, T.A. Shur, M.S. Shen, H. Ytterdal, T., "AIM-Lab: A System for -Remote Characterization of Electronic Devices and Circuits over the Internet", *Proc. 3rd IEEE Int. Caracas Conf. on Devices, Circuits and Systems* (ICCDCS-2000), Cancun, Mexico, IEEE Catalog No. 00TH8474C, 2000, pp. 143.1 -I43.6
- [8] Smith, K. Strandman, J.O. Berntzen, R. Fjeldly, T.A. Shur, M.S., "Advanced Internet Technology in Laboratory Modules for Distance-Learning," accepted for presentation at the American Society for Engineering Education Annual Conference & Exposition 2001, ASEE'01.

- [9] Fjeldly, T.A. Berntzen, R. Strandman, J.O. Shur, M.S. Jeppson, K. "LAB-on-WEB" <u>http://www.lab-on-web.com/</u>
- [10] Ytterdal, T. Wulff, C. Sæthre, T.A. Skjevlan, A., "Next Generation Lab" <u>http://ngl.fysel.ntnu.no</u>
- [11] Lee, E.K.F. Gulak, P.G. "A CMOS field-programmable analog array". Solid-State Circuits, IEEE Journal of, Volume: 26 Issue: 12, Dec. 1991, pp: 1860–1867
- [12] Gulak, P.G. "Field-Programmable Analog Arrays: Past, present and future perspectives". 1995. IEEE.
- [13] Klein, H.W. "Introductory EPAC: an Analog FPGA", *IMP Inc.* ISBN# 0-7803-2636-9
- [14] Klein, H.W. "The EPAC Architecture: An Expert Cell Approach to Field Programmable Analog Devices" *Lattice Semiconductor Corp. Analog Integrated Circuits and Signal Processing* 17, 1998, pp 91-103.
- [15] Wulff, C, Ytterdal, T "Programmable analog integrated circuit for us in remotely operated laboratories". International Conference on Engineering Education (ICEE-2002). Found in Appendix VII and on the CDROM
- [16] Europractice, <u>http://www.europractice.com</u>
- [17] Wulff, C. "Mixed-Signal Design using Mentor Graphics", Fall 2002 Department of Physical Electronics, NTNU. Found on the CDROM
- [18] Austria Micro Systems, <u>http://www.austriamicrosystems.com</u>

Appendices

Appendix I: Successive Approximation ADC

An ADC of this type converters the input value by performing a binary search. It starts by comparing the input value to the digital word in the middle of the range, for an 8-bit converter this is 128, if it is higher we know that the digital representation of the input value is between 128-255, if it is lower it is between 0-127. An 8-bit successive approximation analog to digital converter (ADC) is built up of one digital to analog converter (DAC), one comparator and a successive approximation register modeled in software. The software routine performs a binary search for the correct digital word. A flowchart for the successive approximation ADC architecture is provided in figure 1. A block diagram of this ADC is shown in figure 2.

Figure 1 ADC block diagram

Figure 2 Successive approximation ADC flowchart

Appendix II: Serial Peripheral Interface

SPI is a widely used interface, and is featured in many micro-controllers and IC's. The general idea behind a SPI is to have two shift registers connected together with the miso (master in slave out) and mosi (master out slave in) signals as show in the figure below. The master controls the transfer through the sck signal. When sck goes high, the master writes its MSB to the mosi signal and shifts one position, the slave writes its MSB to the miso signal and shifts one position. Both master and slave write to their LSB from their respective input signals. This way the data is shifted from master to slave and from slave to master, thus providing bi-directional data transfer.

Figure 1 SPI block diagram

Appendix III: Schematics

Schematic 1 maspan	2
Schematic 2 panic_top	3
Schematic 3 panic_io_buff	4
Schematic 4 outputbuff	5
Schematic 5 cb_100u	6
Schematic 6 panic	7
Schematic 7 panic (1/4) top left schematic	8
Schematic 8 panic (2/4) top right schematic	9
Schematic 9 panic (3/4) bottom left schematic	10
Schematic 10 panic (4/4) bottom right schematic	11
Schematic 11 panic_io_tribuff	12
Schematic 12 Panic_Control	13
Schematic 13 AMF_LMIR2OR2	14
Schematic 14 AMF_LMOR2	15
Schematic 15 curr_combine	16
Schematic 16 curr_combine_cells	17
Schematic 17 curr_combine10u	
Schematic 18 AddrReg	19
Schematic 19 TOC	20
Schematic 20 IoFallBack	21
Schematic 21 Decode4_16	22
Schematic 22 SPI	23
Schematic 23 Control	24
Schematic 24 AMF_LMIR2OR2	
Schematic 25 ORS_analog	
Schematic 26 IRS_analogv2	
Schematic 27 AMF_Digital_LMOR2	
Schematic 28 LineDec	
Schematic 29 IRS_Digital	
Schematic 30 ORS_Digital	31
Schematic 31 ModReg	32
Schematic 32 irs_cellv2	
Schematic 33 buff_ors	

Schematic 1 maspan

Appendices

Schematic 2 panic_top

Schematic 3 panic_io_buff

Schematic 4 outputbuff

Schematic 5 cb_100u

Schematic 6 panic

Schematic 7 panic (1/4) top left

Appendices

Schematic 8 panic (2/4) top right

Schematic 9 panic (3/4) bottom left

Schematic 10 panic (4/4) bottom right

Schematic 11 panic_io_tribuff

Appendices

Schematic 12 Panic_Control

Schematic 13 AMF_LMIR2OR2

Schematic 14 AMF_LMOR2

Schematic 15 curr_combine

Schematic 16 curr_combine_cells

Schematic 17 curr_combine10u

Schematic 18 AddrReg

Schematic 19 TOC

Schematic 20 IoFallBack

Schematic 21 Decode4_16

Schematic 22 SPI

Schematic 23 Control

Schematic 24 AMF_Digital_LMIR2OR2

Appendices

Schematic 25 ORS_analog

Schematic 26 IRS_analogv2

Schematic 27 AMF_Digital_LMOR2

Schematic 28 LineDec

Schematic 29 IRS_Digital

Schematic 30 ORS_Digital

Schematic 31 ModReg

Schematic 32 irs_cellv2

Schematic 33 buff_ors

Appendix IV: LVS

		armings ror	cell "\$USER_WULFF/Diplom/ic/panic/maspan"
WARNING: Short	circuit	- Different	names on one net:
Net Id	: _ "DV		
(1) II (2) n	ame "VS	SSRZ" AL I S" at loca	tion (2450 25 3531 65) on layer 35 "MEIL"
The na	me "PVSS	R2" was ass	igned to the net.
		*****	*****
	##		**
	##	CAL	IBRE SYSTEM ##
	##		##
	##	L	VS REPORT ##
	##		##
	######	*********	
REPORT FILE NAME	:	/homes/br	utus/wulff/Diplom/ic/lvs.rep
LAYOUT NAME:		\$USER WUL	FF/Diplom/ic/maspan
SOURCE NAME:		\$USER_WUL	FF/Diplom/da/panic/maspan/vpt_cub_device
LVS MODE:		Mask	
RULE FILE NAME:		/dak2/ams	2/mentor/ic_station/cub/rules/cub.rules
CREATION TIME:		Thu Nov 1	4 19:54:40 2002
CURRENT DIRECTOR	Y:	/homes/br	utus/wulff/Diplom/ic
USER NAME.		WUIII	
*****	* * * * * * * *	******	***************************************
		OVER	ALL COMPARISON RESULTS
******	******	*******	***************************************
		# ##	######################################
	# #		CORRECT #
	# #	#	# \/
	#	##	*****
Manual and Theba			
	1		
Warning: Ambi	lanced s	mashed mosf	ets were matched.
Warning: Ambi	lanced s guity po	mashed mosf ints were f	ets were matched. ound and resolved arbitrarily.
Warning: Ambi	lanced s guity po	mashed mosf ints were f	ets were matched. ound and resolved arbitrarily.
Warning: Ambi	lanced s guity po 	mashed mosf ints were f	ets were matched. ound and resolved arbitrarily.
Warning: Ambi	lanced s guity po OF OBJEC	mashed mosf ints were f 	ets were matched. ound and resolved arbitrarily.
Warning: Ambi	lanced s guity po OF OBJEC 	mashed mosf ints were f TS 	ets were matched. ound and resolved arbitrarily.
Warning: Ambi	lanced s guity po OF OBJEC 	mashed mosf ints were f TS 	ets were matched. ound and resolved arbitrarily.
Warning: Ambi	lanced s guity po OF OBJEC Layout	mashed mosf ints were f TS Source 	ets were matched. ound and resolved arbitrarily. Component Type
Warning: Ambi	lanced se guity po OF OBJEC Layout 6191	mashed mosf ints were f 	ets were matched. ound and resolved arbitrarily. Component Type
Warning: Ambi	lanced s guity po OF OBJEC Layout 6191	mashed mosf ints were f 	ets were matched. ound and resolved arbitrarily. Component Type *
Warning: Ambi	lanced s guity po OF OBJEC Layout 6191 7381	mashed mosf ints were f 	ets were matched. ound and resolved arbitrarily. Component Type * * mn (4 pins)
Warning: Ambi	lanced s guity po OF OBJEC Layout 6191 7381 72	mashed mosf ints were f 	ets were matched. ound and resolved arbitrarily. Component Type * * mn (4 pins) * lddn (4 pins)
Nets: Instances:	lanced s guity po OF OBJEC 6191 7381 72 7405	mashed mosf ints were f 	<pre>ets were matched. ound and resolved arbitrarily. Component Type * * * mn (4 pins) * lddn (4 pins) * mp (4 pins)</pre>
Warning: Ambi	lanced s guity po OF OBJEC 6191 7381 72 7405 23 	mashed mosf ints were f 50urce 6190 5668 9 5650 23 20	<pre>ets were matched. ound and resolved arbitrarily. Component Type * * * mn (4 pins) * lddn (4 pins) * lddn (4 pins) * mp (4 pins) c (2 pins) * t m (4 pins)</pre>
Warning: Ambi	lanced s guity po OF OBJEC 6191 7381 72 7405 23 101 20	mashed mosf ints were f Source 6190 5668 9 5650 23 100 20	<pre>ets were matched. ound and resolved arbitrarily. Component Type * * mn (4 pins) * lddn (4 pins) * lddn (4 pins) * mp (4 pins) c (2 pins) * r (2 pins; p n) r (3 pins; p n p sub)</pre>
Warning: Ambi	lanced s guity po OF OBJEC 6191 7381 72 7405 23 101 30 1717	mashed mosf ints were f 	<pre>ets were matched. ound and resolved arbitrarily. </pre>
Nets: Instances:	lanced s guity po OF OBJEC 6191 7381 72 7405 23 101 30 1717	mashed mosf ints were f 	<pre>ets were matched. ound and resolved arbitrarily. </pre>
Nets: Instances: Total Inst:	lanced si guity po OF OBJEC 6191 7381 72 7405 23 101 30 1717 1717 16729	mashed mosf ints were f 	<pre>ets were matched. ound and resolved arbitrarily. </pre>
Nets: Instances: Total Inst:	lanced si guity po OF OBJEC 6191 7381 7405 23 101 30 1717 16729	mashed mosf ints were f 	<pre>ets were matched. ound and resolved arbitrarily. </pre>
Nets: Instances: Total Inst:	lanced si guity po OF OBJEC 6191 7381 72 7405 23 101 30 1717 16729	mashed mosf ints were f 	<pre>ets were matched. ound and resolved arbitrarily. </pre>
Nets: Instances: Total Inst: NUMBERS OF OBJEC	lanced s guity po OF OBJEC 6191 7381 72 7405 23 101 30 1717 16729 TS AFTER	mashed mosf ints were f 	<pre>ets were matched. ound and resolved arbitrarily. </pre>
<pre>Warning: Onld Warning: Ambi INITIAL NUMBERS 0 Nets: Instances: Total Inst: NUMBERS OF OBJEC</pre>	lanced s guity po OF OBJEC 6191 7381 72 7405 23 101 30 1717 16729 TS AFTER	mashed mosf ints were f 	<pre>ets were matched. ound and resolved arbitrarily. </pre>
<pre>Warning: Jinki Warning: Ambi INITIAL NUMBERS I Nets: Instances: Total Inst: NUMBERS OF OBJEC</pre>	lanced s guity po OF OBJEC 6191 7381 72 7405 23 101 30 1717 16729 TS AFTER Layout	mashed mosf ints were f 	<pre>ets were matched. ound and resolved arbitrarily. </pre>
<pre>Warning: Onld Warning: Ambi INITIAL NUMBERS 0 Nets: Instances: Total Inst: NUMBERS OF OBJEC</pre>	lanced s guity po OF OBJEC 6191 7381 72 7405 23 101 30 0 1717 16729 TS AFTER Layout	mashed mosf ints were f 	<pre>ets were matched. ound and resolved arbitrarily. </pre>
<pre>Warning: Junia Warning: Ambi INITIAL NUMBERS J Nets: Instances: Total Inst: NUMBERS OF OBJEC </pre>	lanced si guity po OF OBJEC 6191 7381 72 7405 23 101 30 0 1717 16729 TS AFTER Layout 3059	mashed mosf ints were f 	<pre>ets were matched. ound and resolved arbitrarily. </pre>
Nets: Total Inst: Nets: Numbers of object Nets:	lanced si guity po OF OBJEC 6191 7381 72 7405 23 101 7381 72 7405 23 101 172 7405 23 101 172 7405 23 101 172 7405 23 101 172 7405 23 101 177 7405 23 101 177 7405 23 101 177 7405 23 101 72 7405 23 101 70 72 7405 23 101 70 70 70 70 70 70 70 70 70 70 70 70 70	mashed mosf ints were f 	<pre>ets were matched. ound and resolved arbitrarily. Component Type </pre>
Nets: Total Inst: Numbers of Object Nets: Instances: Numbers of Object Nets: Numbers of Object Nets: Numbers:	lanced si guity po OF OBJEC 6191 7381 72 7405 23 101 7381 72 7405 23 101 172 7405 23 101 172 7405 23 101 172 7405 23 101 172 7405 23 101 172 7405 23 101 172 7405 23 101 172 7405 23 101 172 7405 23 101 172 7405 23 101 172 7405 23 101 72 7405 7405 75 75 75 75 75 75 75 75 75 75 75 75 75	mashed mosf ints were f 	<pre>ets were matched. ound and resolved arbitrarily. </pre>
Nets: Total Inst: NumBERS OF OBJEC Nets: Instances:	lanced si guity po OF OBJEC 6191 7381 72 7405 23 101 30 1717 16729 TS AFTER Layout 3059 549 9	mashed mosf ints were f 	<pre>ets were matched. ound and resolved arbitrarily. </pre>
<pre>Nets: Total Inst: NumBERS OF OBJEC </pre>	lanced si guity po OF OBJEC 6191 7381 72 7405 23 101 30 1717 16729 TS AFTER 16729 TS AFTER 3059 549 9 378 22	mashed mosf ints were f 	<pre>ets were matched. ound and resolved arbitrarily. </pre>

	30 30	r (3 pin	s: p n sub)			
1	73 173	d (2 pin	s)			
15	44 1544	INV (2 p	ins)			
34	48 348	NAND2 (3	pins)			
	10 10 75 75	NAND3 (4	pins)			
1	75 75 N9 109	NOR2 (3	pins)			
1	51 51	NOR3 (4	pins)			
	2 2	NOR4 (5	pins)			
	14 14	AOI_2_1	(4 pins)			
	13 13	OAI_2_1	(4 pins)			
	8 8	OAI_2_1_	1 (5 pins)			
	8 8	OAI_2_2_	1 (6 pins)			
7-	46 746	SDW2 (3	pins)			
1	73 173	SDW3 (4	pins)			
10	2 1085 2 1085	SUP2 (3)	pins)			
		SHIVE (F	p1118)			
Total Inst: 54	18 5418					
* - Number of	objects in	lavout different	from number in s	urge		
" = Number Of	objects in	Tayout different	rrom number in sc	Jurce.		
******	* * * * * * * * * * * *	*****	***************	******	*******	*****
		LVS PARAMET	ERS			
o LVS Setup:						
-						
Component Type Pro	operties:	lvs_dev	ice spicemodel			
Subtype Property:		mdl_pri	m			
Pin Name Propertie	es:	phy_pin				
Power Net Names:		VDD VDD.	A PVDDR1 PVDDR2 \	rdda3v		
Ground Net Names:		VSS VSS	A PVSSR1 PVSSR2 B	VSSR3 PVSSR4		
Ignore Ports:		YES				
Check Port Names:		NO				
All Capacitor Pine	s Swappable:	. NO				
Reduce Series Mos	Transistors	· NU				
Reduce Semi-Series	s Mos Transi	stors: NO				
Recognize Gates:	5 1100 110101	ALL				
Reduce Split Gates	3:	YES				
Reduce Parallel B	ipolar Trans	istors: YES				
Reduce Series Capa	acitors:	YES				
Reduce Parallel Ca	apacitors:	YES				
Reduce Series Res	istors:	YES				
Reduce Parallel Re	esistors:	YES				
Reduce Parallel D	iodes:	YES				
Unused Device Lay	out Filter O	ptions:				
Unused Device Sou	rce Filter O	ptions:				
Soft Substrate Pin	ns:	NO				
LVS Report Option	в:					
Expand Unbalanced	Cells:	YES				
GIODAIS ARE PORTS	•	1ES NO				
Dregerve Darametr	ized Cells:	NO				
Spice Prefer Ping	:	NO				
Spice Slash Is Spi	ace:	YES				
Spice Allow Float:	ing Pins:	YES				
Property Resolution	on Maximum:	32				
Signature Maximum	:	None				
Layout Case:		NO				
Source Case:		NO				
Compare Case:		NO				
Report List Limit	:	999				
o Numeric Trace Prop	erties:					
Component Com	nponent	Source	Direct	Mask	Tole- 7	Irace
Type Sul	otype	Property Name	Property Name	Property Name	rance	
mn		instpar(w)	W	W	1%	YES
mn		instpar(1)	1	1	1%	YES
mp		instpar(w)	w	w	1%	YES
mp		instpar(1)	Ţ	Ţ	1%	YES
1aan Iddr		instpar(w)	W 1	W 1	1%	IES
lddr		instpar(1)	1 W	⊥ w	⊥õ 1 ©	1E0 VEC
lddp		instpar(1)	w 1	w 1	⊥∿ 1ջ	YES
r		instpar(w)	± w	± W	⊥∿ 1ջ	YES
r		instpar(1)	 1	 1	± **] %	YES
с		dev_area	a	a	1%	YES
с		peri	p	p	1%	NO
L						

	********	*******	********	**********	***************************************
	Matched	Matched	Unmatched	Unmatched	Component
Nets:	3059	3059	0	0	
Instances:	549	549	0	0	mn(nmos4)
	9	9	0	0	lddn(nmosh)
	378	378	0	0	mp(pmos4)
	23	23	0	0	c(cpolya)
	30	30	0	0	r(rdiffp3)
	67	67	0	0	d(nd)
	41	41	0	0	d(nwd)
	65	65	0	0	d(pd)
	1544	1544	0	0	INV
	10	10	0	0	NAND2 NAND3
	75	75	0	0	NAND4
	109	109	0	0	NOR2
	51	51	0	0	NOR 3
	2	2	0	0	NOR4
	13	13	0	0	OAI 2 1
	8	8	0	0	OAI_2_1_1
	8	8	0	0	OAI_2_2_1
	746	746	0	0	SDW2
	173	173	0	0	SDW3
	1085	1085	0	0	SUP2 SMN2
					5.4.2
Total Inst:	5418	5418	0	0	
tatistics: 4055 layout m 3533 mos tr 4 source mos 2 mos trans	nos transist ransistors w transistors sistors were	ors were re ere deleted were reduc deleted by	duced to 522. by parallel ed to 2. parallel red	reduction.	
tatistics: 4055 layout m 3533 mos th 4 source mos 2 mos trans 66 series lay 64 series sou 1637 parallel	nos transist ransistors w transistors sistors were yout resisto urce resisto L layout dio	ors were re ere deleted were reduc deleted by rs were red rs were red des were re	duced to 522. by parallel ed to 2. parallel red uced to 33. uced to 32. duced to 93.	reduction. uction. 33 connecting 32 connecting	nets were deleted. nets were deleted.
tatistics: 4055 layout m 3533 mos tr 4 source mos 2 mos trans 66 series lay 64 series sou 1637 parallel 173 parallel 1 net was mat	nos transist ransistors w transistors sistors were yout resisto urce resisto l layout dio source diod cched arbitr	ors were re ere deleted were reduc deleted by rs were red rs were red des were re es were red arily.	duced to 522. by parallel ed to 2. parallel red uced to 33. uced to 32. duced to 93. uced to 7.	reduction. uction. 33 connecting 32 connecting	g nets were deleted. g nets were deleted.
tatistics: 4055 layout m 3533 mos th 4 source mos 2 mos trans 66 series lay 64 series sou 1637 parallel 173 parallel 1 net was mat ayout Names 2	nos transist ransistors w transistors sistors were yout resisto l layout dio source diod cched arbitr Chat Are Mis	ors were re ere deleted were reduc deleted by rs were red rs were red des were re es were red arily. sing In The	duced to 522. by parallel ed to 2. parallel red uced to 33. uced to 32. duced to 93. uced to 7. Source:	reduction. uction. 33 connecting 32 connecting	g nets were deleted. g nets were deleted.
tatistics: 4055 layout m 3533 mos th 4 source mos 2 mos trans 66 series lay 64 series sou 1637 parallel 173 parallel 1 net was mat ayout Names 7 Nets:	nos transist ransistors w transistors sistors were yout resisto rce resisto L layout dio source diod cched arbitr That Are Mis VDDA PVSSR	ors were re ere deleted were reduc deleted by rs were red des were red arily. sing In The 2	duced to 522. by parallel ed to 2. parallel red uced to 33. uced to 32. duced to 93. uced to 7. Source:	reduction. uction. 33 connecting 32 connecting	nets were deleted. nets were deleted.
tatistics: 4055 layout m 3533 mos tr 4 source mos 2 mos trans 66 series lay 64 series sou 1637 parallel 1 net was mat ayout Names 7 Nets: nitial Corres	nos transist ransistors w transistors sistors were yout resisto urce resisto l layout dio source diod cched arbitr That Are Mis VDDA PVSSR	ors were re ere deleted were reduc deleted by rs were red des were re arily. sing In The 2 ints:	duced to 522. by parallel ed to 2. parallel red uced to 33. uced to 32. duced to 93. uced to 7. Source:	reduction. uction. 33 connecting 32 connecting	nets were deleted. nets were deleted.
tatistics: 4055 layout m 3533 mos th 4 source mos 2 mos trans 66 series lay 64 series sou 1637 parallel 1 net was mat ayout Names 7 Nets: nitial Corres Nets:	nos transist ransistors w transistors sistors were yout resisto l layout dio source diod ched arbitr That Are Mis VDDA PVSSR spondence Po VDD cntr(1 panic_out(panic_out(panic_in(6	ors were re ere deleted were reduc deleted by rs were red des were re arily. sing In The 2 ints:) cntr_io(1 5) panic_in 3) panic_out	<pre>duced to 522. by parallel ed to 2. parallel red uced to 33. uced to 32. duced to 93. uced to 7. Source:) cntr(0) cnt (5) panic_out (7) panic_in((4)</pre>	reduction. uction. 33 connecting 32 connecting (0) panic_in(4) panic_out(<pre>0) panic_out(1) panic_in(1) 3) panic_in(0) panic_in(2) 7) panic_out(6) panic_out(2)</pre>
tatistics: 4055 layout m 3533 mos th 4 source mos 2 mos trans 66 series lay 64 series sou 1637 parallel 173 parallel 1 net was mat ayout Names 7 Nets: nitial Corres Nets: mbiguity Resc	Nos transist ransistors w transistors sistors were yout resisto arce resisto l layout dio source diod ched arbitr That Are Mis VDDA PVSSR VDDA PVSSR VDD cntr(1 panic_out(panic_out(panic_in(6	ors were re ere deleted were reduc deleted by rs were red des were re es were red arily. sing In The 2 ints:) cntr_io(1 5) panic_in 3) panic_in) panic_out ts:	<pre>duced to 522. by parallel ed to 2. parallel red uced to 33. uced to 32. duced to 93. uced to 7. Source:) cntr(0) cnt (5) panic_out (7) panic_in((4)</pre>	reduction. uction. 33 connecting 32 connecting (0) cntr_io((0) panic_in(4) panic_out(<pre>0 panic_out(1) panic_in(1) 3 panic_in(0) panic_in(2) 7) panic_out(6) panic_out(2)</pre>
tatistics: 4055 layout m 3533 mos tr 4 source mos 2 mos trans 66 series lay 64 series sou 1637 parallel 173 parallel 1 net was mat ayout Names 7 Nets: nitial Corres Nets: mbiguity Reso (Each one The liste Arbitrary	nos transist ransistors w transistors sistors were yout resisto rce resisto l layout dio source diod ched arbitr Chat Are Mis VDDA PVSSR VDDA PVSSR VDD cntr(1 panic_out(panic_out(panic_out(panic_in(6 c) c) the foll ed objects w y matching m	ors were re ere deleted were reduc deleted by rs were red arily. sing In The 2 ints:) cntr_io(1 5) panic_in 3) panic_in) panic_out ts: owing objec ere matched ay be preve	<pre>duced to 522. by parallel ed to 2. parallel red uced to 33. uced to 32. duced to 93. uced to 7. Source:) cntr(0) cnt (5) panic_out (7) panic_in((4) ts belongs to arbitrarily nted by assig</pre>	reduction. uction. 33 connecting 32 connecting 32 connecting (0) panic_in(4) panic_out(a group of i by the Ambiguning names to	<pre>9 nets were deleted. 9 nets were deleted. 0) panic_out(1) panic_in(1) 3) panic_in(0) panic_in(2) 7) panic_out(6) panic_out(2) ndistinguishable objects. hity Resolution feature of LVS. 0 these objects or to adjacent nets).</pre>
tatistics: 4055 layout m 3533 mos tr 4 source mos 2 mos trans 66 series lay 64 series sou 1637 parallel 173 parallel 1 net was mat ayout Names 7 Nets: mbiguity Reso (Each one The liste Arbitrary Layout 	nos transist ransistors w transistors sistors were yout resisto rce resisto l layout dio source diod ched arbitr Chat Are Mis VDDA PVSSR VDDA PVSSR VDD cntr(1 panic_out(panic_out(panic_out(panic_in(6 c) c) the foll ed objects w y matching m	ors were re ere deleted were reduc deleted by rs were red arily. sing In The 2 ints:) cntr_io(1 5) panic_in 3) panic_out ts: owing objec ere matched ay be preve	<pre>duced to 522. by parallel ed to 2. parallel red uced to 33. uced to 32. duced to 93. uced to 7. Source:) cntr(0) cnt (5) panic_out (7) panic_in((4) ts belongs to arbitrarily nted by assig</pre>	reduction. uction. 33 connecting 32 connecting 32 connecting (0) panic_in(4) panic_out(a group of i by the Ambiguning names to	<pre>9 nets were deleted. 9 nets were deleted. 0) panic_out(1) panic_in(1) 3) panic_in(0) panic_in(2) 7) panic_out(6) panic_out(2) mdistinguishable objects. hity Resolution feature of LVS. 0 these objects or to adjacent nets). Source </pre>
tatistics: 4055 layout m 3533 mos tr 4 source mos 2 mos trans 66 series lay 64 series sou 1637 parallel 173 parallel 1 net was mat ayout Names 7 Nets: mbiguity Resc (Each one The liste Arbitrary Layout 	nos transist ransistors w transistors sistors were yout resisto ince resisto l layout dio source diod ched arbitr That Are Mis VDDA PVSSR VDDA PVSSR VDDA PVSSR VDD cntr(1 panic_out(panic_out(panic_out(panic_out) of the foll d objects w y matching m	ors were re ere deleted were reduc deleted by rs were red arily. sing In The 2 ints:) cntr_io(1 5) panic_in 3) panic_in) panic_out ts: owing objec ere matched ay be preve	<pre>duced to 522. by parallel ed to 2. parallel red uced to 33. uced to 32. duced to 93. uced to 7. Source:) cntr(0) cnt (5) panic_out (7) panic_in((4) ts belongs to arbitrarily nted by assig ets </pre>	reduction. uction. 33 connecting 32 connecting 32 connecting (0) panic_in(4) panic_out(a group of i by the Ambiguning names to	<pre>9 nets were deleted. 9 nets were deleted. 9 panic_out(1) panic_in(1) 9 panic_in(0) panic_in(2) 7) panic_out(6) panic_out(2) 9 ndistinguishable objects. 10 these objects or to adjacent nets). 10 Source </pre>

3259(1666.150,2325.	150)	/I\$31/I\$1/I\$821/I\$7464/m_5
3260(1666.150,2332.	350)	/I\$31/I\$1/I\$821/I\$7464/m_2
3261(1691.150,2340.	750)	** missing smashed mosfet **
2150/1500 250 2242		
3158(1509.350,2342.	550)	/1021/101/10021/10/405/00_5
3175(1509.350,2326.	950)	/I\$31/I\$1/I\$821/I\$7465/m_2
3176(1509.350,2334.	150)	** missing smashed mosfet **
*****	* * * * * * * * * * * * * * * * * * * *	******
	SUMMARY	
*****	*****	********
Total CPU Time: 246 s	eq	
Total Elapsed Time: 249 s	ec	

Appendix V: Excerpt from PAIC project report

(Chapter 3 DESIGN)

This chapter will explain the system level design of the PAIC and how the final concept came to life.

Interface

When choosing the data interface for PAIC there were two key considerations: it should be simple to use and have minimal impact on the number of pins. The second consideration resulted in choosing a serial interface. There are a number of serial interfaces available, i.e. Universal Asynchronous Receiver and Transmitter (UART) or Serial Peripheral Interface (SPI). Both UART and SPI are widely supported in micro-controllers on the market, but SPI simpler to implement. Therefore SPI was chosen as the PAIC data interface. An explanation of the SPI interface is given in Appendix I.

Version 1

The first version of the PAIC routing network is based on the assumption that there will be a limited number of nodes in an analog circuit. Therefore, there is no need to provide all possible connections of analog cells. It is also based on the assumption that the analog cells will have different number of ports, and thus it does not distinguish between inputs and outputs. An overview is provided in figure 1, we can see the control and routing blocks from Figure 1. An example of a signal highway is provided in figure 2.

Figure 1. PAIC version 1

Figure 2. Signal highway example

Each of the analog ports (inputs and outputs of the analog cells) are connected to transmission gates which in turn are connected to the signal highway. Controlling the transmission gate is a second transmission gate with connections to the row decoder and the connection RAM. Cycling the RAM and the signal highway simultaneously

updates the signal highway connections. The RAM size is given by the number of ports times the number of nodes (signal highways). In a theoretical circuit this could amount to 16x30 bit RAM, this is based on 10 analog cells with three ports each and a maximum of 16 nodes in a circuit. This results in 480 bits to reprogram the circuit. An example of a circuit is given in figure 3, it uses 4 nodes and 8 ports giving a total 32 bits to reprogram the circuit. Figure 4 shows the equivalent circuit of Figure . The advantage of version 1 is high routing capability, only limited by number of nodes in the analog circuit. The disadvantages are: Complex control of routing network, no readback support, introduces noise because of frequent transitions close to signal highway (row_select transmission gates), analog cell output load dependent on routing network and a need for on-chip RAM

Figure 3. Example circuit

Figure 4. Equivalent circuit

For the connection in figure 4 the RAM would contain the following bits:

	PO	P1	P2	P3	Ρ4	Р5	Рб	P7
R0	0	0	0	1	0	0	0	0
Rl	0	1	0	0	1	1	0	0
R2	0	0	1	0	0	0	1	0
R3	1	0	0	0	0	0	0	0

Table 1 RAM content for figure 4

Version 2

Instead of using a single large signal highway it was decided to use one smaller signal highway for each input. This reduces the number of possible connections but it also reduces the complexity of the control circuitry. A block diagram of version 2 is shown in figure 6. Version 2 uses a string (14 bits) for each input, which is loaded into a shift register. This string is from now on called a module packet. The module packet consists of three main fields. The first 4 bits contain the module address, the next 2 bits contain the line address and the last 8 bits contain the highway payload. The highway payload loaded into the input register & switch (IRS) that controls transmission gates, which in turn controls which analog signal should be connected to the respective output of the IRS as pictured in figure 5. Both the module address and the line address increase with log2(n), hence the number of analog cells and number of input/outputs has little effect on the length of the module packet. The highway payload, on the other hand, has significant impact on the length of the module packet.

Figure 5. Input register & switch

The signal highway in version 2 limits the complexity of the circuits that can be connected. With one IRS per analog cell there is an 8 input limit. One way to circumvent this problem is to use two or more IRS per analog cell. This does not increase the highway payload (HWP) but will increase the line address since the analog framework will contain more than 4 IRS. If 3 bits (8 IRS) where used for the line address the number of possible connections would double (as would the number of clock cycles needed to program the registers). In mathematical terms, n bit increase will give $2^{(2+n)}$ (HWP length) possible connections where as an increase of highway payload will give $2^{(2)}$ (HWP length +HWP length increase). The input to PAIC is a small control circuitry with a SPI interface to the outside world, it controls loading and reading back from the main register and controls a counter which iterates through the highway payload. The highway payload is shifted into the IRS via the counter/mux connection. The module address is connected to a decoder that controls the various framework register enable signals. Version 2 contains an output switch for routing the output signal off chip. The output switch contains a buffer to supply the analog cell with a constant load and to drive the output signals. Version 2 has one global analog input and one global analog output. The advantages of version 2 are: Reduced control complexity from version 1, no need for on-chip RAM and less noise introduced since analog signals can be better separated from digital logic. The

disadvantages are: No readback support, limited input signals to analog cells, few global input/output signals, some noise from the digital portions will still be introduced, longer programming time than version 1.

Figure 6 Version 2 block diagram

Version 2 vs version 1

An advantage of version 2 over version 1 is the reduction of noise from the digital modules. In version 2 the analog signal paths can be better separated from noisy digital paths and the input control can open the clock line to the framework registers so the digital circuits close to the analog module are in sleep mode. In version 1 this is not possible since the RAM must be cycled to update the routing network. The greatest advantage of version 2 vs version 1 is the reduction of digital complexity, as always a reduction comes with a cost, but in the version 2 the cost is programming time that can be alleviated by a higher clock rate. Version 2 was chosen as a basis for further research

Version 3

Version 3 is a modification of version 2 to make it a viable architecture. It has increased the line address to 3 bits and the framework around each analog cell now consists of; a line decoder, five IRS, one internal module register (ModReg) and two output register & switch (ORS). Figure 7 shows an overview of version 3. The IRS is the same as in version 2 with some modification to allow reading the routing network. The module register serves as a control register or a digital input to the analog cell. The ORS is a modification of the output switch in version 2. It can switch the output signal from the analog cell to one of four global outputs and it is modified to allow reading of the routing network. The main register was removed and replaced by an address register (AddrReg). Instead of the shift registers in version 2 all registers in version 3 are parallel load, except a register in the SPI block. Addressing the modules is done through a module address and a line address; both are stored in the 8-bit address register. The module address is connected to a 4-16 decoder (ModDec) that provides an enable signal for the line decoders and the line address is connected to the line decoder (LineDec) that provides an enable signal for IRS, ORS and a module register. An 8-bit bi-directional bus is used for data transfer to and from the registers. Programming and controlling version 3 is done through a SPI for data input/output and a 3-bit bus for control signals. Version 3 also has a table of content, which contains a definition of the analog cells. The master clock was removed from version 3 [12], and the architecture was made semi-asynchronous. Semi-asynchronous involves the use of synchronous registers but not a master clock. The clock signals for the synchronous registers are supplied from the control logic. A thorough explanation of the design will be given later under the implementation section. The advantages of version 3 are: readback support included, more input signals to analog cells than version 2 (line address increase), four global input/output signals, less introduced noise due to no master clock, reduced programming time through the introduction of a global reset signal (no need to program analog modules that will not be used) and an 8-bit digital input to analog cells.

Figure 7 Overview of Version 3

Version 3 vs version 2

Most of the modifications in version 3 were made to make version 2 into a viable architecture i.e. modification of the IRS and ORS to support readback of the routing network. The removal of the master clock signal gives version 3 better noise performance than version 2. Without the master clock there will be no transitions in the digital logic unless data is written to the PAIC, therefore the digital logic will be more quiet than with a master clock.

APPENDIX VI: NEXT GENERATION LAB – A SOLUTION FOR REMOTE CHARACTERIZATION OF ANALOG INTERGRATED CIRCUITS

Carsten Wulff, Thomas Aas Sæthre, Arne Skjelvan, Trond Ytterdal, Tor A. Fjeldly and Michael Shur Department of Physical Electronics, Norwegian University of Science and Technology Email: ytterdal@fysel.ntnu.no

Abstract- In this report, we describe the development and use of a remotely operated laboratory based on Microsofts .NET technology. The Next Generation Lab combines the latest in web technology with industrial standard instruments to make a cost effective solution for education in the field of analog CMOS integrated circuits.

INTRODUCTION

With the mass proliferation of the Internet, interesting possibilities have emerged for extending its use into new areas, including distance-education – a rapidly growing part of the university curricula. By utilizing the WEB, the potential exists for offering courses to remote students, who can participate without other technical requirements than a personal computer and a telephone line.

Laboratory and computer-aided-design modules are vital parts of engineering education, but so far, these elements have been considered impractical for distance-education. On the other hand. user-friendly, computer-controlled is revolutionizing instrumentation the wav measurements are being made, and is now permitting net-based techniques to be utilized for setting up remote laboratory access. Such a remote laboratory can, for example, be used in conjunction with courses in electrical engineering, allowing remote students to gain hands-on experience in a wide range of areas. As an added benefit, this technology may offer students the opportunity to work with sophisticated equipment, of the kind they are more likely to find in an industrial setting, and which may be too expensive for most schools to purchase and maintain. Much of the same arguments can be used with regards to software for computer-aided-design.

The basic concept and feasibility of remote system control via the Internet were investigated in two Siv.ing. (M.Sc.) student theses at the Norwegian University of Science and Technology (NTNU) [1], [2]. Further development was pursued in 1998 in collaboration with Professor Shur at Rensselaer Polytechnic Institute (RPI) in Troy, NY. This work has been described in several publications [3]-[11]. So far, the work on the remote laboratories has been dedicated to semiconductor device characterization. It includes several experiments that are performed on a microelectronic test chip, and is used as a lab module in a course on modelling of semiconductor devices at the senior or first year graduate level. In Norway, this is a course that is presently being taught remotely from UniK,located in Oslo, to students at NTNU in Trondheim. The remote lab is planned to become a permanent part of this course.

The main objective of the work presented in this paper is to bring the remote laboratories to the circuit level by developing a Web based lab devoted to characterization of analog integrated circuits. The laboratory is based at the Department of Physical Electronics, NTNU. 4th year students in the courses Analog CMOS 1 and 2 will use this lab.

PHYSICAL ARCHITECTURE

Next Generation Laboratory (NGL) is built with three main objectives; scalability, easy to add experiments and real time feedback to the user. Through the use of technologies like web services, which are a framework for remote method calls using Hypertext Transfer Protocol (HTTP) and Simple Object Access Protocol (SOAP), the possibility for a distributed architecture emerges. The NGL has a web service that provides a web interface to GPIB (General Purpose Interface Bus) and DAQ (Data Acquisition) boards on the lab workstation, separating the computer connected to the instruments from the application logic. This makes it possible to use dedicated web servers for the web application and lower cost workstation connected to the instruments. Figure 1 shows an example of a possible architecture. The individual workstations can be connected to one or more device under test (DUT).

The physical architecture of the NGL prototype contains the NGL web server and one lab server. Connected to the lab server are a vector network analyser, a power supply, and a Data Acquisition (DAQ) board. These are in turn connected to the DUT, which is a IC containing 9 operational amplifiers (OPAMP) designed as project work in the Analog CMOS 1 course.

We chose to measure the frequency response of the opamps connected in a closed loop as a prototype experiment. The experiment allows the user to specify closed loop gain, bias current and offset from common mode level at positive input of the opamp. The wiring diagram for the AnCMOS chip is shown in Figure 2.

Figure 1 The physical architecture of NGL

Figure 2 Wiring diagram for the AnCMOS chip

SOFTWARE ARCHITECTURE

The NGL is based on Microsoft's emerging .NET technology and Scalable Vector Graphics (SVG) from Adobe. The .NET framework has a large class library that was extensively used for the NGL. The NGL application, except for the LabServer and client-side, was written in C#, a modern object oriented programming language. The LabServer was written with a combination of Managed and Unmanaged C++. For the client-side we chose JavaScript. Figure 3 gives an overview over the NGL prototype.

Each of the instruments connected to the DUT is represented in software by a corresponding object. This object provides the basic functionalities

of the instrument, it makes use of a proxy object on the web server which is a local representation of the LabServer web service. The fact that the methods for writing GPIB strings and using DAQ commands are located on another computer is thus made transparent for the instrument object

Figure 3 Prototype Overview

The NGL does not only provide scalability in hardware, but also in software. All experiments are implemented as an object in the NGL application. Experiment is the base class for all experiment, and all classes that inherit Experiment are automatically available through a JavaScript menu on the NGL web application. In C# an object can be casted to the type of it's parent and still retain the specialization of the child. This makes it possible to run-time decide which experiment to run, and in addition provide a common framework for all experiments i.e. the same queue control and XML (Extended Mark-up Language) formatted string to show the result. This of course limits the possibilities for experiment especially in the way results are presented, but the graph engine can handle both linear and logarithmic plots, auto scaling of values from votta to vocto. sizing of plots and "unlimited" number of plot. The actual number of plots is of course restricted by the space on the web page.

The prototype experiment is of a batch type set-up, the user specifies the parameters and runs the experiment. Running the experiment takes around 300ms and to ensure thread safety the NGL application implements a simple form of queue control. When a user submits the parameters, the web application checks to see if there are other experiments running, if there is no experiments running it takes control and runs the experiment. When it is finished it frees it's control and allows other experiments to run.

SVG is used to plot the results of the experiment, as mentioned the experiment provides an XML formatted string, this string is parsed by a SVGcontrol object which generates JavaScript that draws the graph.

The web application continuously provides the user with status update by means of writing and flushing the output stream without breaking the connection. This is especially important if the experiment has to wait for access to run.

Adding experiments to NGL architecture follows three simple steps:

1. Write one class that inherits *Experiments*

2.Compile and build into the NGL application

3. Test your experiment

The experiments can in theory be written in VB.NET, C#, PerlNET, C++, J++ or any other language that supports the .NET framework

The NGL is show in Figure 4

CONCLUSION

The NGL web application provides users with a reliable and efficient tool for analog CMOS integrated circuit experiments. It gives lecturers and students the opportunity to perform real experiments on actual circuits, using industrial standard measurement equipment.

The NGL web application provides a framework for distributed experiment set-ups spanning wide geographical areas.

Choosing ASP.NET as server-side technology provides distributed architecture with no additional cost.

ACKNOWLEDGEMENTS

The project is funded by the Nordunet project "Internet Technology in Laboratory Modules for Distance-Learning ", principle investigator Prof Tor A. Fjeldly, and the Department of Physical Electronics, NTNU.

REFERENCES

[1] V. Kristiansen, Remotely operated experiments on electric circuits over the Internet - An implementation using Java, M. Sc. thesis, Norwegian University of Science and Technology (1997).

[2] B. Dalager, Remotely operated experiments on electric circuits over the Internet - Realizing a client/server solution, M. Sc. thesis, Norwegian University of Science and Technology (1998).

[3] H. Shen, Z. Xu, B. Dalager, V. Kristiansen, Ø. Strøm, M.S. Shur, T.A. Fjeldly, J. Lü, T. Ytterdal, "Conducting Laboratory Experiments over the Internet", IEEE Trans. on Education, 42, No. 3, pp. 180-185 (1999).

[4] T.A. Fjeldly, M. S. Shur, H. Shen and T. Ytterdal, "Automated Internet Measurement Laboratory (AIM-Lab) for Engineering Education", Proceedings of 1999 Frontiers in Education Conference (FIE'99), San Juan, Puerto Rico, IEEE Catalog No. 99CH37011(C), 12a2 (1999).

[5] M. Shur, T. A. Fjeldly and H. Shen, "AIM-Lab -A System for Conducting Semiconductor Device Characterization via the Internet", late news paper at 1999 International Conference on Microelectronic Test Structures (ICMTS 1999), Gothenburg, Sweden (1999).

[6] T.A. Fjeldly, M.S. Shur, H. Shen, and T. Ytterdal, "AIM-Lab: A System for -Remote Characterization of Electronic Devices and Circuits over the Internet", Proc. 3rd IEEE Int. Caracas Conf. on Devices, Circuits and Systems (ICCDCS-2000), Cancun, Mexico, IEEE Catalog No. 00TH8474C, pp. 143.1 -143.6 (2000)

[7] K. Smith, M. Sc. thesis, UniK/University of Oslo (2000).

[8] J. O. Strandman, M.Sc. Thesis, Norwegian University of Science and Technology (2000)

[9] R. Berntzen, M.Sc. Thesis, Norwegian University of Science and Technology (2001).

[10] K. Smith, J.O. Strandman, R. Berntzen, T.A. Fjeldly, M.S. Shur, "Advanced Internet Technology in Laboratory Modules for Distance-Learning," accepted for presentation at the American Society for Engineering Education Annual Conference & Exposition 2001, ASEE'01".

Figure 4 The NGL

APPENDIX VII: PROGRAMMABLE ANALOG INTEGRATED CIRCUIT FOR USE IN REMOTELY OPERATED LABORATORIES

Carsten Wulff^d, *Trond Ytterdal*²

Abstract — The work presented here aims to outfit remotely operated laboratories with circuit programmability through the use of a programmable analog integrated circuit A concept for remotely operated laboratories using programmable analog integrated circuits is presented. The architecture for a programmable analog integrated circuit and top-level simulations are described.

Index Terms — *Programmable analog integrated circuit, remote laboratory, circuit programmability,*

INTRODUCTION

Laboratory experience is essential when educating designers of analog (and digital) integrated circuits, providing a base for intuitive understanding of the The test equipment for analog underlying theory. integrated circuits is often expensive, and to equip a lab to serve 30 students is impossible for most universities. Remotely operated laboratories provide a cost advantage in centralizing test equipment while providing students with decentralized concurrent access. Remotely operated laboratories have been explored in [1]-[5], [12]. Already there are remote laboratories that enable a student to make measurements on integrated circuits over the Internet. These laboratories often have a limitation on what types of integrated circuits or devices the student has access to. Some labs [10] have large switching matrixes so the student can select from different circuits to measure, others have a single integrated circuit with some tunable parameters [11], [12]. We propose to take different approach to solve this limitation. Instead of using expensive switching matrixes, we aim to use programmable analog integrated circuits to provide a lab with circuit programmability. We will start by introducing the concept of programmable analog integrated circuits and the system architecture. Then a description of the chip architecture and simulations.

CONCEPT

We will first explain the concept of programmable analog integrated circuits for those readers unfamiliar with the subject, and then describe the concept for the system architecture.

Programmable analog integrated circuits

The concept of a programmable analog circuit can simply be described as having an integrated circuit with "standard" cells that can be wired into an analog circuit i.e. a filter or an amplifier. Figure 1 shows an example of a programmable analog circuit. By controlling a routing network, which can connect the analog cells to each other, we can "build" analog circuits. In the figure the two resistors and the operational amplifier are connected together to create an amplifier with gain A=-R2/R1.

FIGURE 1 PROGRAMMABLE ANALOG INTEGRATED CIRCUIT EXAMPLE

International Conference on Engineering Education

August 18–21, 2002, Manchester, U.K.

¹ Carsten Wulff, Norwegian University of Science and Technology, Department of Physical Electronics, Trondheim, Norway carsten@wulff.no ² Trond Ytterdal, Norwegian University of Science and Technology, Department of Physical Electronics, Trondheim, Norway ytterdal@fysel.ntnu.no

Programmable analog devices have been reported for more than a decade [6]-[9]. Several manufactures have made programmable analog integrated circuits; among these are Motorola, IPM Inc, Lattice and Anadigm. Several designs of Field Programmable Analog Arrays (FPAA) have been reported [6]-[7], but these are often aimed at a commercial market as an analog counterpart to Field Programmable Gate Arrays (FPGA) for rapid prototyping of analog circuits. The marked for these FPAA circuits has not gained the same momentum as FPGA. This is probably because of the much greater challenges involved in creating a programmable analog integrated circuit. One of the main challenges in creating FPAAs is the fact that analog circuits do not have a smallest common denominator. Digital circuits can (in theory) be created from NAND gates no matter the complexity of the circuit. One approach to circumvent this obstacle is to create expert cells [8]-[9], where each analog cell has a set of tunable parameters i.e. a filter with tunable cut-off frequency. These expert cells are designed by analog designers and are guaranteed to operate within specification. It is a modification of the expert cell approach that has been taken with our Programmable Analog Integrated Circuit (PAnIC).

System Architecture

An overview of the system architecture is presented in Figure 2 and Figure 3. A web-server is connected to a microcontroller and instruments. The instruments can range from simple multi-meters to expensive network analyzers. The instruments are connected to a circuit board that holds several PAnIC chips. Each PAnIC has a set of analog cells that can be selected alone, or wired together to create a more complex circuit. A student connects to the web-server and gets a graphical user interface that contains a toolbox with the available analog cells. The student draws a circuit from the analog cells in the toolbox and submits the circuit to the web-server. The web-server configures the PAnIC chips, through the microcontroller, to create the circuit the student requested. It then performs measurements on the circuit the student has drawn and returns the result to the student.

International Conference on Engineering Education

Innovation in Remote Laboratories

FIGURE 2. SYSTEM ARCHITECTURE: CLIENT

FIGURE 3. SYSTEM ARCHITECTURE: SERVER-SIDE

PANIC ARCHITECTURE

The PAnIC is based on the ideas published in [8], [9]. The PAnIC consists of control logic, an analog module framework (AMF) and several analog cells. A block diagram is pictured in Figure 4. The PAnIC can be interfaced with most microcontrollers and provides 4 analog input signals and 4 analog output signals.

Control

Control consists of an serial peripheral interface (SPI), address register, control signal decoder, module address decoder and a table of content. The SPI is used for data and address communication with the microcontroller. The module address register and decoder are for addressing the analog modules (analog module is the analog cell plus the analog module framework). The PAnIC

August 18-21, 2002, Manchester, U.K.

VII - 2

architecture can address up to 16 analog modules, but in the prototype we chose to only implement 6. The table of content stores an identification tag for each analog module such that a user does not need to know the address of i.e the differential comparator to use it. When the system starts it can read the table of content and find the module address that correspondes to the desired analog cell.

Analog module framework (AMF)

The AMF consists of; input register & switch (IRS), output register & switch (ORS), line decoder and module register. The IRS serves as input for the analog module, each IRS can switch up to 8 signals in any combination and each AMF can have up to 5 IRS cells. In addition the IRS provides a function denoted ReadBack that is essential in the design and will be explained later. The ORS cells provide buffering of the output and can switch the output signal to one (or none) of 4 off-chip output signals. Each AMF has two ORS cells. The module registers servers as an 8-bit digital input and output. It can also be used for control signals for the analog cell. The line decoder provides an enable signal for each of the IRS, ORS and module register.

FIGURE 4 PANIC ARCHITECTURE

Analog Cells

The analog cells in the prototype consist of a Digital to Analog Converter (DAC), sample & hold, differential

International Conference on Engineering Education

Innovation in Remote Laboratories

comparator, differential operational transconductance amplifier and a bandgap voltage reference. Students in the course Analog CMOS 2, at our university, have designed all analog cells in the prototype. The types of cells are all frequently used in application specific integrated circuits (ASIC). The different ways the cells can be connected is all predetermined during layout of the chip. A possibility for a connection is made by connecting and output signal from an ORS to an IRS of another cell. One of the circuits that can be created with the prototype is an Analog to Digital Converter (ADC). By connecting the DAC, sample & hold and the differential comparator as pictured in Figure 5 we can construct the analog portion of a successive approximation analog to digital converter. An ADC of this type performs a binary search to find the binary output word that most closely resembles the analog input value. It first compares the input value to 1/2 the signal swing, if the input value is higher the most significant bit (MSB) is 1, if the input is lower MSB is set to zero. It then continues in the half that it knows the input signal lies within, After 8 comparisons the correct digital output word within a resolution of 8 bits is found. The successive approximation register, which controls the binary search, is modeled in the micro-controller.

FIGURE 5. ADC BLOCK DIAGRAM

ReadBack

ReadBack is, as mentioned, an essential part of the PAnIC design. ReadBack provides a system using the PAnIC chip with a method to discover how to connect the analog cells together and which connections are possible. When the system starts it can request from the PAnIC a "list" of all possible connections between the analog cells. This in combination with the table of content makes the PAnIC a self-consistent programmable analog integrated circuit for use in a flexible environment such as a remote laboratory.

SIMULATION

A model for the PAnIC was initially constructed in SystemC [13] to test the validity of the concept. Simulation of the PAnIC was done at all levels but especially on circuit programmability, SPI, ReadBack and the Analog to Digital Converter. The simulation results

August 18-21, 2002, Manchester, U.K.

verified that the concept vas valid. The SystemC model was translated into VHDL for the digital portions, and the analog portions (switches, analog cells and buffers) were modeled in SPICE. The VHDL model was simulated using both a behavioral representation and synthesized netlists using process specific cells. In all simulations, the PAnIC has preformed as expected.

CONCLUSION

The use of programmable analog integrated circuits in remotely operated laboratories has been introduced. The architecture of PAnIC has been explained and proven through simulations to be a self-consistent programmable analog integrated circuit. The PAnIC provides a remote laboratory with extended flexibility through circuit programmability.

FUTURE WORK

The PAnIC is in the last stages of the design phase and the prototype will go into production august 2002. A prototype remote laboratory using the PAnIC is scheduled for end of 2002 beginning of 2003.

REFERENCES

- Shen, H. Xu, Z. Dalager, B. Kristiansen, V. Strøm, Ø. et al "Conducting Laboratory Experiments over the Internet", *IEEE Trans. on Education*, 42, No. 3, 1999, pp. 180-18.
- [2] Fjeldly, T.A. Shur, M.S. Shen, H. Ytterdal, T., "Automated Internet Measurement Laboratory (AIM-Lab) for Engineering Education", *Proceedings of 1999 Frontiers in Education Conference (FIE'99), San Juan, Puerto Rico*, IEEE Catalog No. 99CH37011(C), 1999, 12a2.
- [3] Shur, M.S. Fjeldly, T. A. Shen, H., "AIM-Lab A System for Conducting Semiconductor Device Characterization via the Internet", late news paper at 1999 International Conference on Microelectronic Test Structures (ICMTS 1999), Gothenburg, Sweden.
- [4] Fjeldly, T.A. Shur, M.S. Shen, H. Ytterdal, T., "AIM-Lab: A System for -Remote Characterization of Electronic Devices and Circuits over the Internet", *Proc. 3rd IEEE Int. Caracas Conf. on Devices, Circuits and Systems (ICCDCS-2000), Cancun, Mexico*, IEEE Catalog No. 00TH8474C, 2000, pp. I43.1 -I43.6
- [5] Smith, K. Strandman, J.O. Berntzen, R. Fjeldly, T.A. Shur, M.S., "Advanced Internet Technology in Laboratory Modules for Distance-Learning," accepted for presentation at the American Society for Engineering Education Annual Conference & Exposition 2001, ASEE'01.
- [6] Lee, E.K.F. Gulak, P.G. "A CMOS field-programmable analog array". Solid-State Circuits, IEEE Journal of, Volume: 26 Issue: 12, Dec. 1991, pp: 1860-1867
- [7] Gulak, P.G. "Field-Programmable Analog Arrays: Past, present and future perspectives". 1995. IEEE.
- [8] Klein, H.W. "Introductory EPAC: an Analog FPGA", IMP Inc. ISBN# 0-7803-2636-9
- [9] Klein, H.W. "The EPAC Architecture: An Expert Cell Approach to Field Programmable Analog Devices" *Lattice Semiconductor*

International Conference on Engineering Education

Innovation in Remote Laboratories

Corp. Analog Integrated Circuits and Signal Processing 17, 1998, pp 91-103.

- [10] Fjeldly, T.A. Berntzen, R. Strandman, J.O. Shur, M.S. Jeppson, K. "LAB-on-WEB" http://www.lab-on-web.com/
- [11] Ytterdal, T. Wulff, C. Sæthre, T.A. Skjevlan, A., "Next Generation Lab" <u>http://ngl.fysel.ntnu.no</u>
- [12] Wulff, C. Ytterdal, T. Sæthre, T.A. Skjevlan, A. Fjeldy, T.A. et al "Next Generation Lab – A solution for remote characterization of analog integrated circuits". *International Caracas Conference* on Devices, Circuits and Systems (ICCDCS-2002).
- [13] SystemC, http://www.systemc.org

August 18–21, 2002, Manchester, U.K.