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Introduction to the Mathematics of Noise Sources
Carsten Wulff

Abstract— This is a compilation of different books [1]–[3] and
their introduction to noise analysis of electronic circuits.

I. NOISE

Noise is a phenomena that occurs in all electronic circuits.
It places a lower limit on the smallest signal we can use.
Many now have super audio compact disc (SACD) players
with 24bit converters, 24 bits is around 224 = 16.78 Million
different levels. If 5V is the maximum voltage, the minimum
would have to be 5V

224 ≈ 298nV . That level is roughly
equivalent to the noise in a 50 Ohm resistor with a bandwith
of 96kHz. There exist an equation that relates number of
bits to signal to noise ratio [2], the equation specifies that
SNR = 6.02 ∗ Bits + 1.76 = 146.24dB. As of 12.2005 the
best digital to analog converter (DAC) that Analog Devices (a
very big semiconductor company) has is a DAC with 120dB
SNR, that equals around Bits = (120− 1.76)/6.02 = 19.64.
In other words, the last four bits of your SACD player is
probably noise!

II. STATISTICS

The mean of a signal x(t) is defined as

x(t) = lim
T→∞

1
T

∫ +T/2

−T/2

x(t)dt (1)

The mean square of x(t) defined as

x2(t) = lim
T→∞

1
T

∫ +T/2

−T/2

x2(t)dt (2)

The variance of x(t) defined as

σ2 = x2(t)− x(t)
2

(3)

For a signals with a mean of zero the variance is equal to the
mean square. The auto-correlation of x(t) is defined as

Rx(τ) = x(t)x(t + τ)

= lim
T→∞

1
T

∫ +T/2

−T/2

x(t)x(t + τ)dt (4)

III. AVERAGE POWER

Average power is defined for a continuous system as (5)
and for discrete samples it can be defined as (6). Pav usually
has the unit A2 or V 2, so we have to multiply/devide by the
impedance to get the power in Watts. To get Volts and Amperes
we use the root-mean-square (RMS) value which is defined as√

Pav .

Pav = lim
T→∞

1
T

∫ +T/2

−T/2

x2(t)dt (5)

Pav =
1
N

N∑
i=0

x2(i) (6)

If x(t) has a mean of zero then, according to (3), Pav is
equal to the variance of x(t).

Many different notations are used to denote average power
and RMS value of voltage or current, some of them are listed
in Table I and Table II. Notation can be a confusing thing,
it changes from book to book and makes expressions look
different. It is important to realize that it does not matter how
you write average power and RMS value. If you want you
can invent your own notation for average power and RMS
value. However, if you are presenting your calculations to
other people it is convenient if they understand what you have
written. In the remainder of this paper we will use e2

n for
average power when we talk about voltage noise source and
i2n for average power when we talk about current noise source.
The n subscript is used to identify different sources and can
be whatever.

TABLE I
NOTATIONS FOR AVERAGE POWER

Voltage Current

V 2
rms I2

rms

V 2
n I2

n

v2
n i2n

TABLE II
NOTATIONS FOR RMS

Voltage Current

Vrms Irmsq
V 2

n

q
I2
nq

v2
n

q
i2n

IV. NOISE SPECTRUM

With random noise it is useful to relate the average power to
frequency. We call this Power Spectral Density (PSD). A PSD
plots how much power a signal carries at each frequency. In
literature Sx(f) is often used to denote the PSD. In the same
way that we use V 2 as unit of average power, the unit of
the PSD is V 2

Hz for voltage and A2

Hz current. The root spectral
density is defined as

√
Sx(f) and has unit V√

Hz
for voltage

and I√
Hz

for current.
The power spectral density is defined as two times the

Fourier transform of the auto-correlation function [1]

Sx(f) = 2
∫ ∞
−∞

Rx(τ)e−j2πfτdτ (7)
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This can also be written as

Sx(f) = 2
[∫ ∞
−∞

Rx(τ) cos(ωτ)dτ −
∫ ∞
−∞

Rx(τ)j sin(ωτ)dτ

]
= 2

[∫ 0

−∞
Rx(τ) cos(ωτ)dτ +

∫ ∞
0

Rx(τ) cos(ωτ)dτ

]
− 2j

[∫ 0

−∞
Rx(τ) sin(ωτ)dτ +

∫ ∞
0

Rx(τ) sin(ωτ)dτ

]
= 4

∫ ∞
0

Rx(τ) cos(ωτ)dτ

− 2j

[
−
∫ ∞

0

Rx(τ) sin(ωτ)dτ +
∫ ∞

0

Rx(τ) sin(ωτ)dτ

]
= 4

∫ ∞
0

Rx(τ) cos(ωτ)dτ (8)

, since e−jωτ = cos(ωτ)−j sin(ωτ), Rx(τ) and cos(ωτ) are
symmetric around τ = 0 while sin(ωτ) is asymmetric around
τ = 0.

The inverse of power spectral density is defined as

Rx(τ) =
1
2

∫ ∞
−∞

Sx(f)ej2πfτdf =
∫ ∞

0

Sx(f) cos(ωτ)df

(9)
If we set τ = 0 we get

x2(t) =
∫ ∞

0

Sx(f)df (10)

which means we can easily calculate the average power if we
know the power spectral density. As we will see later it is
common to express noise sources in PSD form.

Another very useful theorem when working with noise in
the frequency domain is this

Sy(f) = Sx(f)|H(f)|2 (11)

, where Sy(f) is the output power spectral density, Sx(f)
is the input power spectral density and H(f) is the transfer
function of a time-invariant linear system.

If we insert (11) into (10), with Sx(f) = a constant = Dv

we get

x2(t) =
∫

Sy(f)df = Dv

∫
|H(f)|2df = Dvfx (12)

, where fx is what we call the noise bandwidth. For a single
time constant RC network the noise bandwidth is equal to

fx =
πf0

2
=

1
4RC

(13)

where fx is the noise bandwidth and f0 is the 3dB frequency.
We haven’t told you this yet, but thermal noise is white and

white means that the power spectral density is flat (constant
over all frequencies). If Sx(f) is our thermal noise source and
H(f) is a standard low pass filter, then equation (11) tells us
that the output spectral density will be shaped by H(f). At
frequencies above the fx in H(f) we expect the root power
spectral density to fall by 20dB per decade.

V. PROBABILITY DISTRIBUTION

Theorem 1 (Central limit theorem): The sum of n indepen-
dent random variables subjected to the same distribution will
always approach a normal distribution curve as n increases.

This is a neat theorem, it explains why many noise sources
we encounter in the real world are white.1 Take thermal noise
for example, it is generated by random motion of carriers in
materials. If we look at a single electron moving through the
material the probability distribution might not be Gaussian.
But summing probability distribution of the random movments
with a large number of electrons will give us a Gaussian
distribution, thus thermal noise is white.

VI. PSD OF A WHITE NOISE SOURCE

If we have a true random process with Gaussian distribution
we know that the autocorrelation function only has a value for
τ = 0. From equation (4) we have that

Rx(τ) = lim
T→∞

1
T

∫ +T/2

−T/2

x(t)x(t− τ)dt

=

[
lim

T→∞

1
T

∫ +T/2

−T/2

x2(t)dt

]
δ(τ)

= x2(t)δ(τ) (14)

The reason being that in a true random process x(t) is
uncorrelated with x(t + τ) where τ is an integer. If we use
equation (7) we see that

Sx(f) = 2
∫ ∞
−∞

x2(t)δ(τ)e−j2πfτdτ

= 2x2(t)
∫ ∞
−∞

δ(τ)e−j2πfτdτ

= 2x2(t) (15)

, since ∫
δ(τ)e−j2πfτdτ = e0 = 1 (16)

This means that the power spectral density of a white noise
source is flat, or in other words, the same for all frequencies.

VII. SUMMING NOISE SOURCES

Summing noise sources is usually trivial, but we need to
know why and when it is not. We if we write the time
dependant noise signals as

v2
tot(t) = (v1(t)+v2(t))2 = v2

1(t)+2v1(t)v2(t)+v2
2(t) (17)

1Gaussian distribution = normal distribution. Noise sources with Gaussian
distribution are called white
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The average power is defined as

e2
tot = lim

T→∞

1
T

∫ +T/2

−T/2

v2
tot(t)dt

= lim
T→∞

1
T

∫ +T/2

−T/2

v2
1(t)dt

+ lim
T→∞

1
T

∫ +T/2

−T/2

v2
2(t)dt

+ lim
T→∞

1
T

∫ +T/2

−T/2

2v1(t)v2(t)dt

= e2
1 + e2

2 + lim
T→∞

1
T

∫ +T/2

−T/2

2v1(t)v2(t)dt (18)

If e2
1 and e2

2 are uncorrelated noise sources we can skip the
last term in (18) and just write

e2
tot = e2

1 + e2
2 (19)

Most natural noise sources are uncorrelated.

VIII. SIGNAL TO NOISE RATIOS

Signal to Noise Ratio (SNR) is a common method to specify
the relation between signal power and noise power in linear
systems. It is defined as

SNR = 10 log
(

Signal power

Noise power

)
= 10 log

(
v2

sig

e2
n

)

= 20 log

vrms√
e2
n

 (20)

Another useful ratio is Signal to Noise and Distortion
(SNDR), since most real systems exibit non-linearities it is
useful to include distortion in the ratio. One can calculate SNR
and SNDR in many ways. If we don’t know the expression
for e2

n we can do a FFT of our output signal. From this FFT
we sum spectral components except at the signal frequency to
get noise and distortion. SNR is normally calculated as

SNR = 10 log
(

Signal power

Noise power − 6 first harmonics

)
(21)

And SNDR is calculated as

SNDR = 10 log
(

Signal power

Noise power

)
(22)

IX. NOISE FIGURE AND FRIIS FORMULA

Noise factor is a measure on the noise performance of a
system. It is defined as

F =
v2

o

source contribution to v2
o

(23)

where v2
o is the total output noise.

The noise figure is defined as (noise factor in dB)

NF = 10 log(F ) (24)

The noise factor can also be defined as

F =
SNRinput

SNRoutput
(25)

This brings us right into what is known as Friis formula. If
we have a multistage system, for example several amplifiers
in cascade, the total noise figure of the system is defined as

F = 1 + F1 − 1 +
F2 − 1

G1
+

F3 − 1
G1G2

+ .... (26)

Here Fi is the noise figures of the individual stages and Gi is
the available gain of each stage. This can be rewritten as

F = F1 +
N∑

i=1

Fi+1 − 1∏i−1
k=1 Gi

(27)

Friiss formula tells us that it is the noise in the first stage
that is the most important if G1 is large. We could say that
in a system it is important to amplify the noise as early as
possible!

X. CONCLUSION

We have looked at the properties of noise in time domain
and frequency domain. The equations in this paper are useful
tools when dealing with noise sources.
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